forked from langroid/langroid
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdocument_parser.py
471 lines (390 loc) · 15.3 KB
/
document_parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import logging
import re
from enum import Enum
from io import BytesIO
from typing import Any, Generator, List, Tuple
import fitz
import pdfplumber
import pypdf
import requests
from langroid.mytypes import DocMetaData, Document
from langroid.parsing.parser import Parser, ParsingConfig
from langroid.parsing.urls import url_to_tempfile
logger = logging.getLogger(__name__)
class DocumentType(str, Enum):
PDF = "pdf"
DOCX = "docx"
class DocumentParser(Parser):
"""
Abstract base class for extracting text from special types of docs
such as PDFs or Docx.
Attributes:
source (str): The source, either a URL or a file path.
doc_bytes (BytesIO): BytesIO object containing the doc data.
"""
@classmethod
def create(cls, source: str, config: ParsingConfig) -> "DocumentParser":
"""
Create a DocumentParser instance based on source type
and config.<source_type>.library specified.
Args:
source (str): The source of the PDF, either a URL or a file path.
config (ParserConfig): The parser configuration.
Returns:
DocumentParser: An instance of a DocumentParser subclass.
"""
if DocumentParser._document_type(source) == DocumentType.PDF:
if config.pdf.library == "fitz":
return FitzPDFParser(source, config)
elif config.pdf.library == "pypdf":
return PyPDFParser(source, config)
elif config.pdf.library == "pdfplumber":
return PDFPlumberParser(source, config)
elif config.pdf.library == "unstructured":
return UnstructuredPDFParser(source, config)
elif config.pdf.library == "haystack":
return HaystackPDFParser(source, config)
else:
raise ValueError(
f"Unsupported PDF library specified: {config.pdf.library}"
)
elif DocumentParser._document_type(source) == DocumentType.DOCX:
if config.docx.library == "unstructured":
return UnstructuredDocxParser(source, config)
elif config.docx.library == "python-docx":
return PythonDocxParser(source, config)
else:
raise ValueError(
f"Unsupported DOCX library specified: {config.docx.library}"
)
else:
raise ValueError(f"Unsupported document type: {source}")
def __init__(self, source: str, config: ParsingConfig):
"""
Initialize the PDFParser.
Args:
source (str): The source of the PDF, either a URL or a file path.
"""
super().__init__(config)
self.source = source
self.config = config
self.doc_bytes = self._load_doc_as_bytesio()
@staticmethod
def _document_type(source: str) -> DocumentType:
"""
Determine the type of document based on the source.
Args:
source (str): The source of the PDF, either a URL or a file path.
Returns:
str: The document type.
"""
if source.lower().endswith(".pdf"):
return DocumentType.PDF
elif source.lower().endswith(".docx"):
return DocumentType.DOCX
else:
raise ValueError(f"Unsupported document type: {source}")
def _load_doc_as_bytesio(self) -> BytesIO:
"""
Load the docs into a BytesIO object.
Returns:
BytesIO: A BytesIO object containing the doc data.
"""
if self.source.startswith(("http://", "https://")):
response = requests.get(self.source)
response.raise_for_status()
return BytesIO(response.content)
else:
with open(self.source, "rb") as f:
return BytesIO(f.read())
def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]:
"""Yield each page in the PDF."""
raise NotImplementedError
def extract_text_from_page(self, page: Any) -> str:
"""Extract text from a given page."""
raise NotImplementedError
def fix_text(self, text: str) -> str:
"""
Fix text extracted from a PDF.
Args:
text (str): The extracted text.
Returns:
str: The fixed text.
"""
# Some pdf parsers introduce extra space before hyphen,
# so use regular expression to replace 'space-hyphen' with just 'hyphen'
return re.sub(r" +\-", "-", text)
def get_doc(self) -> Document:
"""
Get entire text from pdf source as a single document.
Returns:
a `Document` object containing the content of the pdf file,
and metadata containing source name (URL or path)
"""
text = "".join(
[self.extract_text_from_page(page) for _, page in self.iterate_pages()]
)
return Document(content=text, metadata=DocMetaData(source=self.source))
def get_doc_chunks(self) -> List[Document]:
"""
Get document chunks from a pdf source,
with page references in the document metadata.
Adapted from
https://github.com/whitead/paper-qa/blob/main/paperqa/readers.py
Returns:
List[Document]: a list of `Document` objects,
each containing a chunk of text
"""
split = [] # tokens in curr split
pages: List[str] = []
docs: List[Document] = []
for i, page in self.iterate_pages():
page_text = self.extract_text_from_page(page)
split += self.tokenizer.encode(page_text)
pages.append(str(i + 1))
# split could be so long it needs to be split
# into multiple chunks. Or it could be so short
# that it needs to be combined with the next chunk.
while len(split) > self.config.chunk_size:
# pretty formatting of pages (e.g. 1-3, 4, 5-7)
pg = "-".join([pages[0], pages[-1]])
text = self.tokenizer.decode(split[: self.config.chunk_size])
docs.append(
Document(
content=text,
metadata=DocMetaData(
source=f"{self.source} pages {pg}",
is_chunk=True,
),
)
)
split = split[self.config.chunk_size - self.config.overlap :]
pages = [str(i + 1)]
if len(split) > self.config.overlap:
pg = "-".join([pages[0], pages[-1]])
text = self.tokenizer.decode(split[: self.config.chunk_size])
docs.append(
Document(
content=text,
metadata=DocMetaData(
source=f"{self.source} pages {pg}",
is_chunk=True,
),
)
)
self.add_window_ids(docs)
return docs
class FitzPDFParser(DocumentParser):
"""
Parser for processing PDFs using the `fitz` library.
"""
def iterate_pages(self) -> Generator[Tuple[int, fitz.Page], None, None]:
"""
Yield each page in the PDF using `fitz`.
Returns:
Generator[fitz.Page]: Generator yielding each page.
"""
doc = fitz.open(stream=self.doc_bytes, filetype="pdf")
for i, page in enumerate(doc):
yield i, page
doc.close()
def extract_text_from_page(self, page: fitz.Page) -> str:
"""
Extract text from a given `fitz` page.
Args:
page (fitz.Page): The `fitz` page object.
Returns:
str: Extracted text from the page.
"""
return self.fix_text(page.get_text())
class PyPDFParser(DocumentParser):
"""
Parser for processing PDFs using the `pypdf` library.
"""
def iterate_pages(self) -> Generator[Tuple[int, pypdf.PageObject], None, None]:
"""
Yield each page in the PDF using `pypdf`.
Returns:
Generator[pypdf.pdf.PageObject]: Generator yielding each page.
"""
reader = pypdf.PdfReader(self.doc_bytes)
for i, page in enumerate(reader.pages):
yield i, page
def extract_text_from_page(self, page: pypdf.PageObject) -> str:
"""
Extract text from a given `pypdf` page.
Args:
page (pypdf.pdf.PageObject): The `pypdf` page object.
Returns:
str: Extracted text from the page.
"""
return self.fix_text(page.extract_text())
class PDFPlumberParser(DocumentParser):
"""
Parser for processing PDFs using the `pdfplumber` library.
"""
def iterate_pages(
self,
) -> (Generator)[Tuple[int, pdfplumber.pdf.Page], None, None]: # type: ignore
"""
Yield each page in the PDF using `pdfplumber`.
Returns:
Generator[pdfplumber.Page]: Generator yielding each page.
"""
with pdfplumber.open(self.doc_bytes) as pdf:
for i, page in enumerate(pdf.pages):
yield i, page
def extract_text_from_page(self, page: pdfplumber.pdf.Page) -> str: # type: ignore
"""
Extract text from a given `pdfplumber` page.
Args:
page (pdfplumber.Page): The `pdfplumber` page object.
Returns:
str: Extracted text from the page.
"""
return self.fix_text(page.extract_text())
class HaystackPDFParser(DocumentParser):
"""
Parser for processing PDFs using the `haystack` library.
"""
def get_doc_chunks(self) -> List[Document]:
"""
Overrides the base class method to use the `haystack` library.
See there for more details.
"""
from haystack.nodes import PDFToTextConverter, PreProcessor
converter = PDFToTextConverter(
remove_numeric_tables=True,
)
path = self.source
if path.startswith(("http://", "https://")):
path = url_to_tempfile(path)
doc = converter.convert(file_path=path, meta=None)
# note self.config.chunk_size is in token units,
# and we use an approximation of 75 words per 100 tokens
# to convert to word units
preprocessor = PreProcessor(
clean_empty_lines=True,
clean_whitespace=True,
clean_header_footer=False,
split_by="word",
split_length=int(0.75 * self.config.chunk_size),
split_overlap=int(0.75 * self.config.overlap),
split_respect_sentence_boundary=True,
add_page_number=True,
)
chunks = preprocessor.process(doc)
return [
Document(
content=chunk.content,
metadata=DocMetaData(
source=f"{self.source} page {chunk.meta['page']}",
is_chunk=True,
),
)
for chunk in chunks
]
class UnstructuredPDFParser(DocumentParser):
"""
Parser for processing PDF files using the `unstructured` library.
"""
def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore
from unstructured.partition.pdf import partition_pdf
# from unstructured.chunking.title import chunk_by_title
try:
elements = partition_pdf(file=self.doc_bytes, include_page_breaks=True)
except Exception as e:
raise Exception(
f"""
Error parsing PDF: {e}
The `unstructured` library failed to parse the pdf.
Please try a different library by setting the `library` field
in the `pdf` section of the `parsing` field in the config file.
Supported libraries are:
fitz, pypdf, pdfplumber, unstructured, haystack
"""
)
# elements = chunk_by_title(elements)
page_number = 1
page_elements = [] # type: ignore
for el in elements:
if el.category == "PageBreak":
if page_elements: # Avoid yielding empty pages at the start
yield page_number, page_elements
page_number += 1
page_elements = []
else:
page_elements.append(el)
# Yield the last page if it's not empty
if page_elements:
yield page_number, page_elements
def extract_text_from_page(self, page: Any) -> str:
"""
Extract text from a given `unstructured` element.
Args:
page (unstructured element): The `unstructured` element object.
Returns:
str: Extracted text from the element.
"""
text = " ".join(el.text for el in page)
return self.fix_text(text)
class UnstructuredDocxParser(DocumentParser):
"""
Parser for processing DOCX files using the `unstructured` library.
"""
def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]: # type: ignore
from unstructured.partition.docx import partition_docx
elements = partition_docx(file=self.doc_bytes, include_page_breaks=True)
page_number = 1
page_elements = [] # type: ignore
for el in elements:
if el.category == "PageBreak":
if page_elements: # Avoid yielding empty pages at the start
yield page_number, page_elements
page_number += 1
page_elements = []
else:
page_elements.append(el)
# Yield the last page if it's not empty
if page_elements:
yield page_number, page_elements
def extract_text_from_page(self, page: Any) -> str:
"""
Extract text from a given `unstructured` element.
Note:
The concept of "pages" doesn't actually exist in the .docx file format in
the same way it does in formats like .pdf. A .docx file is made up of a
series of elements like paragraphs and tables, but the division into
pages is done dynamically based on the rendering settings (like the page
size, margin size, font size, etc.).
Args:
page (unstructured element): The `unstructured` element object.
Returns:
str: Extracted text from the element.
"""
text = " ".join(el.text for el in page)
return self.fix_text(text)
class PythonDocxParser(DocumentParser):
"""
Parser for processing DOCX files using the `python-docx` library.
"""
def iterate_pages(self) -> Generator[Tuple[int, Any], None, None]:
"""
Simulate iterating through pages.
In a DOCX file, pages are not explicitly defined,
so we consider each paragraph as a separate 'page' for simplicity.
"""
import docx
doc = docx.Document(self.doc_bytes)
for i, para in enumerate(doc.paragraphs, start=1):
yield i, [para]
def extract_text_from_page(self, page: Any) -> str:
"""
Extract text from a given 'page', which in this case is a single paragraph.
Args:
page (list): A list containing a single Paragraph object.
Returns:
str: Extracted text from the paragraph.
"""
paragraph = page[0]
return self.fix_text(paragraph.text)