Tags: doraut/Flux.jl
Tags
## Flux v0.11.6 [Diff since v0.11.5](FluxML/Flux.jl@v0.11.5...v0.11.6) **Merged pull requests:** - Release 0.11.5 (FluxML#1477) (@DhairyaLGandhi)
## Flux v0.11.5 [Diff since v0.11.4](FluxML/Flux.jl@v0.11.4...v0.11.5) **Closed issues:** - Huge performance difference between sparse and dense representation on GPU (FluxML#189) - onecold is very slow (FluxML#556) - onecold does not work on CuMatrix (FluxML#864) - Multi-dimensional onehot (FluxML#1229) **Merged pull requests:** - Add CTC loss to new Losses module (FluxML#1287) (@maetshju) - remove implicit conversions (FluxML#1393) (@CarloLucibello) - Add Parallel layer (FluxML#1462) (@darsnack) - Improve docs for `crossentropy` & friends (FluxML#1463) (@mcabbott) - One-arg unsqueeze method (FluxML#1469) (@mcabbott) - remove dataset tests (FluxML#1470) (@CarloLucibello) - Fix RNN tests on GPU (FluxML#1473) (@jeremiedb)
## Flux v0.11.4 [Diff since v0.11.3](FluxML/Flux.jl@v0.11.3...v0.11.4) **Closed issues:** - add soft deprecation path for removed datasets (FluxML#1426) - Issues about OneHotVector/OneHotMatrix (FluxML#1445) - Zygote version (FluxML#1455) **Merged pull requests:** - Soft deprecation for Datasets (FluxML#1442) (@CarloLucibello) - Arbitrary dimension one-hot arrays (FluxML#1448) (@darsnack) - release 0.11.4 (FluxML#1451) (@CarloLucibello) - make PackageCompiler happy (FluxML#1453) (@DhairyaLGandhi) - Update Zygote version to 0.6 (FluxML#1456) (@CarloLucibello)
## Flux v0.11.3 [Diff since v0.11.2](FluxML/Flux.jl@v0.11.2...v0.11.3) **Closed issues:** - Better support for scalar model parameters (#214) - MethodError with Complex inputs (#217) - MethodError: Cannot `convert` an object of type TrackedArray{…,Array{Float64,0}} to an object of type Float64 (#230) - BatchNorm changes the data type. (FluxML#260) - Tracker.gradient should take Tuple for parameter arguments (FluxML#281) - Is testmode broken? (FluxML#333) - Leaky abstraction: loss returning Dual instead of TrackedReal (FluxML#366) - Batchnorm fails on GPU (FluxML#385) - Document how to get from TrackedFoo to Foo (FluxML#398) - Adding the derivative of fft (FluxML#410) - Non boolean in boolean context (FluxML#431) - Saving-loading-saving model will cause error using BSON.jl (FluxML#432) - Gaussian process (FluxML#433) - Error with Conv (FluxML#438) - transposed convolution layer (FluxML#440) - Parallel training: reset back! function (FluxML#443) - Export `data` as well? (FluxML#457) - Model worked with 0.5.4, fails with 0.6.8: (FluxML#470) - Differentiation of matrix-matrix product with CuArrays unexpectedly slow. (FluxML#486) - Documentation Pitfall: Saving Model weights does not preserve untracked values (FluxML#492) - Throw error for nested tracked type? (#495) - MaxPool not working on latest master branch (FluxML#501) - Error with negative tracked parameters when using .^ (#515) - Type confusion in broadcast (#523) - Norm of tracked CuArray throws an LLVM compiler error (#537) - No method for computing determinant of TrackedMatrix (#542) - Can't install Flux with Julia-1.0.3 under Ubuntu18 (FluxML#551) - Intermittent test failure in tracker (FluxML#594) - User defined model does not work (FluxML#597) - Documentation: activations example not working (FluxML#604) - Regression: Ambiguous * between Transpose and TrackedArray (#605) - Error while running sample from docs. (FluxML#611) - Getting "Loss is Inf" for two linear layers using Momentum() (FluxML#623) - Support for GNN - Graph Neural Networks (FluxML#625) - params not working with LinearAlgebra.mul! (#627) - train! doesn't work with Trackedreal (#630) - `MethodError: no method matching setindex_shape_check(::Int64, ::Int64)` on custom gradient example (FluxML#642) - Train/test mode (FluxML#643) - DepthwiseConv: no method for non Float64 (FluxML#654) - `collect` drops gradients (#657) - Silently dropped tracking when broadcasting on TaylorSeries (#659) - Error during test in tracker.jl (FluxML#665) - Backprop of sum of product takes very long time (#674) - Basic "taking gradients" example not working (FluxML#683) - LSTM not compatible with GPU (FluxML#686) - backprop fails for adjoint in tuple (FluxML#688) - Iterate over tuples fails for custom functions (#690) - `gpu(param(randn(10,10))) - I` segfaults (#692) - Flux params() does not retrive parameters for composed layers (FluxML#713) - similar(x, (1,2,3)) and similar(x,1,2,3) differ for TrackedArray on GPU (#734) - `Tracked` doesn't work with `mapslices` (#741) - repeat on a TrackedArray gives an error with implied dimensions (#770) - Train model with GPU, got InvalidIRError (FluxML#784) - Diagonal (tracked) x Matrix on GPU gives ReadOnlyMemoryError (#785) - Adding regularization to the loss results in LLVM error when using CuArrays (FluxML#787) - Adding a TrackedReal to a vector of TrackedReal produces a double tracked variable. (#794) - TrackedReal error (FluxML#800) - missing values in features matrix (FluxML#804) - MNIST conv network example errors out (FluxML#806) - BoundsError when using Batchnorm layer inside Maxout layer (FluxML#810) - Flux#zygote slower than Tracker (FluxML#815) - Strange failure when using OneHotMatrix (FluxML#824) - 3D CNN not training (FluxML#834) - RFC: overload `eltype` for models to get current type for precision? (FluxML#843) - Problems using binarycrossentropy() (FluxML#850) - Functor differentiability (FluxML#878) - Add maxpool syntax back (FluxML#880) - normalise is not GPU compatible (FluxML#887) - Float32 for performance improvements (code samples) (FluxML#971) - crossentropy should have label smoothing (FluxML#1016) - Documentation of `pad` keyword (FluxML#1077) - outdims function doesn't work properly for chained layers (FluxML#1086) - RNNCell, LSTMCell and GRUCell are implemented as mutable structs, but never do mutation (FluxML#1089) - RNN on GPU fails on first backward call (FluxML#1114) - remove `@jit` macro (FluxML#1124) - BatchNorm prevents 1-dimensional arrays as input (FluxML#1125) - Broken example with onehotbatch in docs (FluxML#1214) - cuarray gradient for RNN has too many wrappers (FluxML#1259) - Flux.Zeros conflicts with Flux.loadparams! (FluxML#1277) - factor out datasets (FluxML#1278) - Flux.jl precompile takes 20-40 minutes (FluxML#1283) - NNPACK not available for your platform: Windows(x86_64-w64-mingw32-libgfortran5-cxx11) (FluxML#1286) - Failed to load Flux on windows machine (FluxML#1306) - Out-dated documentation for dataloader? (FluxML#1310) - Loading/Saving weights from GPU (FluxML#1318) - ConvTranspose same padding and outdims errors (FluxML#1319) - Importing Custom Datasets (FluxML#1326) - Various CuArray errors when trying to run examples from model zoo on GPU (FluxML#1330) - GPU error when using Zeros() as bias in Conv layer (FluxML#1332) - Can't differentiate foreigncall expression when trying to compute gradient (FluxML#1338) - deprecate treelike (FluxML#1339) - Controlling the parameters W ,in Chain(Dense(),Dense()) neural network (FluxML#1342) - conflicts with many packages (FluxML#1343) - Inconsistency of ADAGrad for matrices (FluxML#1346) - ERROR: Unknown instruction kind LLVMFNeg (FluxML#1349) - CUDNNError: CUDNN_STATUS_BAD_PARAM (code 3) while training lstm neural network on GPU (FluxML#1360) - Unnecessary allocations when using LayerNorm (FluxML#1361) - Docs Basic typo/code-error after 'Stacking It Up' (FluxML#1363) - Dense on GPU causes LLVM error: Cannot cast between two non-generic address spaces (FluxML#1364) - Models with dropout effect GLOBAL_RNG differently when run on GPU (FluxML#1372) - Mutating Arrays not Allowed (FluxML#1375) - Destructure structs (FluxML#1380) - Cannot differentiate GRUCell with CuArray (FluxML#1381) - Gradient is NaN under certain conditions, when using CUDA.jl (FluxML#1382) - cannot update v0.11.1 to v0.11.2 (FluxML#1387) - Documentation should show proper use of throttle (FluxML#1399) - Non-reproducible example in documentation (FluxML#1403) - MethodError: no method matching getindex(::Pair{Symbol,Array{Float64,1}}, ::Symbol) (FluxML#1404) - Flux.LSTM() returns a sequence of states (FluxML#1406) - delete!() function doesn't freeze the paramters in weight matrix (FluxML#1416) - normalise function doesn't normalise to standard deviation of 1.0 (FluxML#1417) - LSTM fails on GPU only (FluxML#1418) - Iris Dataset is out of date (FluxML#1433) - Problem sending custom layers to gpu (FluxML#1437) - Missing docstring error in dev docs (FluxML#1439) **Merged pull requests:** - Implementation of label smoothing with crossentropy (FluxML#1025) (@sambitdash) - Updates to outdims (FluxML#1305) (@darsnack) - RNN update to drop CUDNN, fix LSTM bug and output type stability (FluxML#1367) (@jeremiedb) - remove Datasets + additional deprecations (FluxML#1377) (@CarloLucibello) - Fix some issues with Zeros option 2 (FluxML#1379) (@DrChainsaw) - eliminate most allocations from get! in optimisers (FluxML#1388) (@simeonschaub) - RNN deprecations and naming fixes (FluxML#1390) (@jeremiedb) - Improve docs for `Conv` etc. (FluxML#1391) (@mcabbott) - remove some unused Conv constructors (FluxML#1394) (@CarloLucibello) - fix bias transpose conv (FluxML#1395) (@CarloLucibello) - take gradient of a function not its arguments (FluxML#1398) (@anderson15) - minor documentation change regarding throttle (FluxML#1400) (@ArbitRandomUser) - Update TagBot.yml (FluxML#1401) (@CarloLucibello) - support multiple batch dimensions in Dense layer (FluxML#1405) (@CarloLucibello) - add GA ci (FluxML#1411) (@DhairyaLGandhi) - update ci (FluxML#1412) (@CarloLucibello) - Add buildkite pipeline (FluxML#1413) (@DhairyaLGandhi) - remove `@jit` macro (FluxML#1419) (@gxyd) - Update functions.jl (FluxML#1420) (@Sleort) - fix Dense's docstring (FluxML#1423) (@CarloLucibello) - (Complete) Implementation of label smoothing with crossentropy (FluxML#1427) (@gxyd) - RNN docs (FluxML#1428) (@jeremiedb) - Generalize train/testmode! to all Functors (FluxML#1432) (@ToucheSir) - transition some docs to doctests (FluxML#1436) (@gxyd) - CompatHelper: bump compat for "Reexport" to "1.0" (FluxML#1438) (@github-actions[bot]) - fix docs (FluxML#1443) (@CarloLucibello) - Add inference hints to SkipConnection (FluxML#1446) (@DhairyaLGandhi) - Update GPU CI. (FluxML#1449) (@maleadt)
## Flux v0.11.2 [Diff since v0.11.1](FluxML/Flux.jl@v0.11.1...v0.11.2) **Closed issues:** - Error with Flux.crossentropy (FluxML#435) - Unnecessary typeasserts in Flux.Optimise.apply! cause training to fail (FluxML#816) - OneHotMatrix causes a 'scalar getindex disallowed' error on GPU (FluxML#1006) - Higher order derivative products? (FluxML#1102) - Gradient of Chain with respect to input on gpu (FluxML#1132) - Backprop through time is truncated to only 1 time step (FluxML#1209) - Failed to load Flux 1.11.0 and 1.11.1 with Julia 1.4.2 and 1.5.0 on a windows machine (FluxML#1313) - ADAMW Optimise has no field eta (FluxML#1316) - LayerNorm only operates on 2D tensors (also Diagonal) (FluxML#1321) - NNlib not defined error when loading model saved with BSON (FluxML#1322) - Map and broadcast on LSTM layers give different gradients (FluxML#1324) - zygote (FluxML#1327) - Error while pre-compIling Flux in Julia v1.4.2 on windows 10 (FluxML#1328) - DepthwiseConv gives incorrect channel sizes when initialized from array (FluxML#1331) - Flux.params return extra parameter (FluxML#1348) - XOR Error not converging to 0 (FluxML#1352) - Broken methods(Base.show) (FluxML#1354) - Applying Dense layer on OneHotMatrix is very slow and can be optimized. (FluxML#1356) - Unable to obtain gradient after flattened pooling layer. (FluxML#1359) - "incremental compilation may be fatally broken for this module" when using Flux (FluxML#1370) **Merged pull requests:** - add Flux.skip() (FluxML#1232) (@Moelf) - Add ColPrac badge (FluxML#1317) (@oxinabox) - Change ConvTranspose with SamePad to have outsize = stride * insize (FluxML#1320) (@DrChainsaw) - change nadam cite (FluxML#1333) (@JeffFessler) - params([W, b]) to params(W, b) (FluxML#1334) (@paulxshen) - export OADAM (FluxML#1336) (@cossio) - update for Cuda 2 (FluxML#1345) (@CarloLucibello) - Fix BPTT by overriding stateful broadcast adjoint (FluxML#1358) (@DhairyaLGandhi) - Implement AdaBelief (FluxML#1362) (@willtebbutt) - Update functions.jl (FluxML#1366) (@okaerin) - Fixes FluxML#1354 (FluxML#1368) (@racinmat) - Trailing spaces (FluxML#1369) (@racinmat) - Update Slack URL (FluxML#1373) (@logankilpatrick)
## Flux v0.11.1 [Diff since v0.11.0](FluxML/Flux.jl@v0.11.0...v0.11.1) **Closed issues:** - ADADelta not training parameters (FluxML#1158) - Improve repository's tags (FluxML#1181) - CONTRIBUTING.md missing (FluxML#1182) - Matrix times OneHotVector product does not check dimensions (FluxML#1223) - Performance issue when calculating loss (FluxML#1255) - Expose the RNGs used in initialization to the user (FluxML#1274) - DataLoader fails on tuple input (FluxML#1285) - Unnecessarily slow normalisation, twice calculating mean (FluxML#1295) - Basic example in docs fails (FluxML#1311) **Merged pull requests:** - Fixed Dimension Mismatch - AbtractMatrix and OneHotVector (FluxML#1242) (@maerory) - Updated onehot.jl (FluxML#1256) (@Dsantra92) - Update links and use main page of papers instead of their PDFs (FluxML#1276) (@hieronimo) - Corrections in the Optimisers section of documents (FluxML#1290) (@coldinjection) - Expose RNG in initializers (FluxML#1292) (@findmyway) - Change CuArrays to CUDA on docs homepage (FluxML#1297) (@scimas) - Fix ADADelta calculations and broken tests not catching the problems (FluxML#1299) (@scimas)
## Flux v0.11.0 [Diff since v0.10.4](FluxML/Flux.jl@v0.10.4...v0.11.0) **Closed issues:** - Support for asymmetric padding (FluxML#258) - Support for Kaiming Initialization (FluxML#424) - trained recurrent model can't be saved in BSON (FluxML#531) - saving ADAM optimizer is broken [@save] [BSON] (FluxML#737) - BatchNorm gradients return Float64 instead of Float32 (FluxML#757) - ERROR: UndefVarError: derivative not defined (FluxML#768) - "Same" padding for conv layers? (FluxML#813) - Strange bug with Adjoint (FluxML#866) - Convolution without bias (FluxML#868) - REST API for real-time prediction (FluxML#911) - Zygote errors building bidirectional RNN (FluxML#962) - Batch aware binarycrossentropy and logitbinarycrossentropy (FluxML#1024) - Ways to freeze some part of a functor during training (FluxML#1034) - dropout function is implemented as just an identity (FluxML#1084) - revisit DataLoader api (FluxML#1088) - Dead link in documentation (FluxML#1097) - Orthogonal Initialization for RNN (FluxML#1107) - no method matching apply! (FluxML#1111) - DOC. typo in section of DataLoader (FluxML#1112) - InitError: could not load library "cudnn64_7.dll" (FluxML#1116) - How to downloading only one artifact of CUDA (FluxML#1117) - gpu function does not fully work on structs within structs (FluxML#1118) - SGD exported but not defined (FluxML#1121) - outdim not defined&dont know how to update flux from 0.90 to 0.10 (FluxML#1154) - Simple regularisation fails for Flux 0.10.4 (FluxML#1157) - DataLoader type instability (FluxML#1159) - Remove Manifest from master (FluxML#1164) - LSTM cannot be trained successfully with the latest release version (FluxML#1168) - BatchNorm failed on GPU (FluxML#1172) - ExpDecay does not decay according to the description (FluxML#1176) - Repeating crashes of NVIDIA GPU/CUDA drivers while training on basic model zoo (FluxML#1183) - Can't use Flux (FluxML#1193) - Gradient Does not work on parameterized Variable (FluxML#1196) - Wrong MaxPool gradient? (FluxML#1197) - Apply boolean mask in loss function (FluxML#1198) - Passing Number of hidden units as a float has unexpected behaviour (FluxML#1199) - Error in displying example for Flux.Dense (FluxML#1203) - Error running Flux on Jupyter (FluxML#1205) - MethodError: no method matching apply! in custom loss function (FluxML#1210) - Setting input or output layer size to a float in the Dense constructor should error (FluxML#1217) - MethodError: no method matching apply!(::Type{ADAM}, ::Array{Float64,2}, ::Array{Float64,2}) for simple example (FluxML#1219) - Incorrect gradients LSTM (FluxML#1222) - Create additional pooling layers (FluxML#1224) - ANN Forecasting with Flux (FluxML#1225) - Neural Networks for Image Segmentation (FluxML#1228) - Got an error while training on GPU with Mish activation function (FluxML#1235) - Gradient for BatchNorm no longer works (FluxML#1244) - how to restrain each element of weights to be nonnegative? (FluxML#1250) - Retrieving weights (FluxML#1251) - Adding regularisation causes NaNs on first Epoch (FluxML#1254) - ERROR: Can't differentiate foreigncall expression (FluxML#1257) - Get wrong third order derivative of Morse potential (FluxML#1267) - ERROR: LoadError: Need an adjoint for constructor EnsembleSolution (FluxML#1270) **Merged pull requests:** - Fix for onecold broadcast bug (FluxML#764) (@DhairyaLGandhi) - Make bias optional (FluxML#873) (@DhairyaLGandhi) - Add option for "Same" padding to conv and pooling layers (FluxML#901) (@DrChainsaw) - Add some gradient checking tests on GPUs (FluxML#957) (@DhairyaLGandhi) - docstring for pad, stride, dilation (FluxML#1093) (@saswatpp) - Explicitly import `Flux.Optimiser.apply!` in optimiser docs (FluxML#1113) (@SebastianCallh) - Fix doc indent (FluxML#1123) (@matsueushi) - Removed deprecated SGD exports (FluxML#1127) (@bhvieira) - Added dropgrad in huber_loss (FluxML#1129) (@HenriDeh) - Update glorot_normal doc (FluxML#1131) (@AdarshKumar712) - add ClipValue and ClipNorm (FluxML#1133) (@AStupidBear) - Add functor Cholesky. (FluxML#1138) (@aterenin) - Speedup matmul of CuMatrix and OneHotMatrix (FluxML#1141) (@AStupidBear) - Cleaner training loop (FluxML#1149) (@DhairyaLGandhi) - generalize and homogenize losses (FluxML#1150) (@CarloLucibello) - extend dataloader (FluxML#1152) (@CarloLucibello) - Add correct overload for apply! in docs (FluxML#1156) (@DhairyaLGandhi) - Build docs on Julia 1.3 (FluxML#1160) (@DhairyaLGandhi) - Update CompatHelper.yml (FluxML#1162) (@aminya) - Fix docstring of logitcrossentropy (FluxML#1165) (@cossio) - Fix crossentropy when some probabilities are zero (FluxML#1166) (@cossio) - Update basics.md (FluxML#1167) (@mipals) - Functors (FluxML#1174) (@MikeInnes) - xlogy broadcast adjoint (FluxML#1175) (@MikeInnes) - Align ExpDecay implementation with documentation (FluxML#1177) (@DrChainsaw) - CompatHelper: add new compat entry for "Functors" at version "0.1" (FluxML#1179) (@github-actions[bot]) - Add some functions to docs (FluxML#1184) (@DhairyaLGandhi) - Add some news (FluxML#1185) (@DhairyaLGandhi) - LayerNorm regularization (FluxML#1187) (@sdobber) - Correcting advanced.md (FluxML#1190) (@Sleort) - Pull Request Template (FluxML#1191) (@MikeInnes) - Improve `restructure` performance (FluxML#1192) (@MikeInnes) - Fixing ambiguous remark in Preserve inputs' types (FluxML#1206) (@natema) - Fixing typo in docs (FluxML#1207) (@natema) - Fixing output format for `onehot` (FluxML#1208) (@natema) - Fixing syntax in onehot docstring (FluxML#1211) (@natema) - Fixing indentation in train! docstring (FluxML#1213) (@natema) - Require weight and bias to be AbstractArrays (FluxML#1218) (@oxinabox) - CompatHelper: bump compat for "Adapt" to "2.0" (FluxML#1220) (@github-actions[bot]) - DataLoader with NamedTuple (FluxML#1221) (@cossio) - use `ntuple` in conv (FluxML#1231) (@MikeInnes) - Fix jldoctest for Flux.Dense (FluxML#1236) (@lassepe) - Fix inline code block (FluxML#1238) (@harryscholes) - add adaptive pool (FluxML#1239) (@dnabanita7) - Documentation: Move logging example outside gradient block (FluxML#1240) (@contradict) - add kaiming initialization and relevant docstrings (FluxML#1243) (@johnnychen94) - Optimistic ADAM (FluxML#1246) (@cossio) - outdims: revise implementation for Chain, dimension check for Dense (FluxML#1252) (@hhaensel) - move to CUDA.jl (FluxML#1258) (@CarloLucibello) - improve regularisation docs (FluxML#1260) (@CarloLucibello) - dropout function always active (FluxML#1263) (@CarloLucibello) - create Losses module (FluxML#1264) (@CarloLucibello) - fix a link typo in NEWS (FluxML#1265) (@johnnychen94)
## Flux v0.10.4 [Diff since v0.10.3](FluxML/Flux.jl@v0.10.3...v0.10.4) **Closed issues:** - Binary cross entropy does not work on GPUs (FluxML#464) - Cost functions don't show up in documentation (FluxML#1003) - freeze parameters (FluxML#1022) - a Tracked Array mention (FluxML#1071) - Setup BlackBoxOptim.jl and Evolutionary.jl with sciml_train (FluxML#1075) - Using Flux.train! with train and test DataLoaders? (FluxML#1081) - Function "DataLoader()" does not exist! (FluxML#1109) **Merged pull requests:** - added GlobalMaxPool, GlobalMeanPool, and flatten layers (FluxML#950) (@gartangh) - Adapt to CuArrays ArrayStyle changes. (FluxML#1050) (@maleadt) - update freeze docs (FluxML#1072) (@CarloLucibello) - fix typo in the Dropout docs (FluxML#1076) (@AzamatB) - CompatHelper: bump compat for "CodecZlib" to "0.7" (FluxML#1078) (@github-actions[bot]) - CompatHelper: bump compat for "Colors" to "0.12" (FluxML#1080) (@github-actions[bot]) - Fix typo in the docstrings of AlphaDropout (FluxML#1083) (@AzamatB) - fix doc typos (FluxML#1096) (@wenjie-p) - Allow CuArrays v2.x (FluxML#1098) (@ararslan) - fix tests and new version (FluxML#1110) (@CarloLucibello)
Merge FluxML#1072 1072: update freeze docs r=CarloLucibello a=CarloLucibello Co-authored-by: CarloLucibello <carlo.lucibello@gmail.com>
Merge FluxML#1065 1065: update documenter r=CarloLucibello a=CarloLucibello Co-authored-by: CarloLucibello <carlo.lucibello@gmail.com>
PreviousNext