Skip to content

donggunseo/mrc-level2-nlp-09

 
 

Repository files navigation

KLUE Open-Domain Question Answering, Naver Boostcamp AI Tech 2기

Competition Abstract

🤓 KLUE MRC(Machine Reading Comprehension) Dataset으로 Open-Domain Question Answering을 수행하는 Task.
🤓 질문에 관련된 문서를 찾아주는 Retriever와 관련된 문서를 읽고 답변을 하는 Reader로 구성.
🤓 Leaderboard에서 Public 240개, Private 360개로 평가가 이루어짐.
🤓 하루 10회로 모델 제출 제한

Our solutions

  • retrieval
    • Elastic search
    • Pororo NER
  • Data Augmentation
    • Negative Sampling
    • Question Generation
  • Post Processing
    • Top-k Passages Seperate
    • Answer scoring with softmax
    • Similiarity scoring with KSS(Korean Sentence Spliter)
    • Other post-processing via Mecab
  • Ensemble
    • Hard voting
    • Post processing

최종 순위 2등!


Installation

Set environment

  • Elastic Search
    • root userelastic_test.py
    python elastic_test.py
    
    • non-root user
    ./bin/elasticsearch -d -p pid
    
  • Genertate NER tagged files
# outputs = train_tagged.csv, inference_tagged.csv
python make_ner_tag.py
  • Generate K-fold trainig files
# outputs = fold{n}.csv
python make_ner_tag.py
  • Indexing wikipedia files using Elastic search
python elastic_search.py
  • wandb setting
# default wandb setting in train.py
run = wandb.init(project= 'klue', entity= 'quarter100', name= f'Any training name')
  • Copy qg_dataset in ../data directory

Train model

python train.py

Models are saved in "./models/train_dataset_{experiment_name}/".

Inference

python inference.py --output_dir ./outputs/test_dataset/ --dataset_name ../data/test_dataset/ --model_name_or_path ./models/train_dataset/ --do_predict

Prediction csv files are saved in "./outputs/test_dataset/".

Ensemble

  • Hard voting
  • Ensemble result is saved in "./submission_fold_total.csv".

Docs

Members

김다영, 김다인, 박성호, 박재형, 서동건, 정민지, 최석민

Advisors

박채훈 멘토님

About

mrc-level2-nlp-09 created by GitHub Classroom

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 82.8%
  • Python 17.2%