-
-
Notifications
You must be signed in to change notification settings - Fork 330
/
Copy pathglados.py
615 lines (516 loc) · 22.9 KB
/
glados.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import copy
import json
import queue
import re
import sys
import threading
import time
from dataclasses import dataclass
from pathlib import Path
from typing import Any, List, Optional, Sequence, Tuple
import numpy as np
import requests
import sounddevice as sd
from sounddevice import CallbackFlags
import yaml
from Levenshtein import distance
from loguru import logger
from glados import asr, tts, vad, spoken_text_converter as stc
logger.remove(0)
logger.add(sys.stderr, level="SUCCESS")
VAD_MODEL = "silero_vad.onnx"
VOICE_MODEL = "glados.onnx"
PAUSE_TIME = 0.05 # Time to wait between processing loops
SAMPLE_RATE = 16000 # Sample rate for input stream
VAD_SIZE = 50 # Milliseconds of sample for Voice Activity Detection (VAD)
VAD_THRESHOLD = 0.9 # Threshold for VAD detection
BUFFER_SIZE = 600 # Milliseconds of buffer before VAD detection
PAUSE_LIMIT = 500 # Milliseconds of pause allowed before processing
SIMILARITY_THRESHOLD = 2 # Threshold for wake word similarity
NEUROTOXIN_RELEASE_ALLOWED = False # preparation for function calling, see issue #13
DEFAULT_PERSONALITY_PREPROMPT = (
{
"role": "system",
"content": "You are a helpful AI assistant. You are here to assist the user in their tasks.",
},
)
@dataclass
class GladosConfig:
completion_url: str
model: str
api_key: Optional[str]
wake_word: Optional[str]
announcement: Optional[str]
personality_preprompt: List[dict[str, str]]
interruptible: bool
voice_model: str = VOICE_MODEL
speaker_id: Optional[int] = None
@classmethod
def from_yaml(cls, path: str, key_to_config: Sequence[str] | None = ("Glados",)):
key_to_config = key_to_config or []
try:
# First attempt with UTF-8
with open(path, "r", encoding="utf-8") as file:
data = yaml.safe_load(file)
except UnicodeDecodeError:
# Fall back to utf-8-sig if UTF-8 fails (handles BOM)
with open(path, "r", encoding="utf-8-sig") as file:
data = yaml.safe_load(file)
config = data
for nested_key in key_to_config:
config = config[nested_key]
return cls(**config)
class Glados:
def __init__(
self,
voice_model: str,
speaker_id: Optional[int],
completion_url: str,
model: str,
api_key: str | None = None,
wake_word: str | None = None,
personality_preprompt: Sequence[dict[str, str]] = DEFAULT_PERSONALITY_PREPROMPT,
announcement: str | None = None,
interruptible: bool = True,
) -> None:
"""
Initializes the VoiceRecognition class, setting up necessary models, streams, and queues.
This class is not thread-safe, so you should only use it from one thread. It works like this:
1. The audio stream is continuously listening for input.
2. The audio is buffered until voice activity is detected. This is to make sure that the
entire sentence is captured, including before voice activity is detected.
2. While voice activity is detected, the audio is stored, together with the buffered audio.
3. When voice activity is not detected after a short time (the PAUSE_LIMIT), the audio is
transcribed. If voice is detected again during this time, the timer is reset and the
recording continues.
4. After the voice stops, the listening stops, and the audio is transcribed.
5. If a wake word is set, the transcribed text is checked for similarity to the wake word.
6. The function is called with the transcribed text as the argument.
7. The audio stream is reset (buffers cleared), and listening continues.
Args:
wake_word (str, optional): The wake word to use for activation. Defaults to None.
"""
self.completion_url = completion_url
self.model = model
self.wake_word = wake_word
self._vad_model = vad.VAD(model_path=str(Path.cwd() / "models" / VAD_MODEL))
self._asr_model = asr.AudioTranscriber()
self._tts = tts.Synthesizer(
model_path=str(Path.cwd() / "models" / voice_model),
speaker_id=speaker_id,
)
self._stc = stc.SpokenTextConverter()
# warm up onnx ASR model
self._asr_model.transcribe_file("data/0.wav")
# LLAMA_SERVER_HEADERS
self.prompt_headers = {
"Authorization": (
f"Bearer {api_key}" if api_key else "Bearer your_api_key_here"
),
"Content-Type": "application/json",
}
# Initialize sample queues and state flags
self._samples: List[np.ndarray] = []
self._sample_queue: queue.Queue[Tuple[np.ndarray, np.ndarray]] = queue.Queue()
self._buffer: queue.Queue[np.ndarray] = queue.Queue(
maxsize=BUFFER_SIZE // VAD_SIZE
)
self._recording_started = False
self._gap_counter = 0
self._messages = personality_preprompt
self.llm_queue: queue.Queue[str] = queue.Queue()
self.tts_queue: queue.Queue[str] = queue.Queue()
self.processing = False
self.currently_speaking = False
self.interruptible = interruptible
self.shutdown_event = threading.Event()
llm_thread = threading.Thread(target=self.process_LLM)
llm_thread.start()
tts_thread = threading.Thread(target=self.process_TTS_thread)
tts_thread.start()
if announcement:
audio = self._tts.generate_speech_audio(announcement)
logger.success(f"TTS text: {announcement}")
sd.play(audio, self._tts.rate)
if not self.interruptible:
sd.wait()
def audio_callback_for_sdInputStream(
indata: np.ndarray, frames: int, time: Any, status: CallbackFlags
):
data = indata.copy().squeeze() # Reduce to single channel if necessary
vad_value = self._vad_model.process_chunk(data)
vad_confidence = vad_value > VAD_THRESHOLD
self._sample_queue.put((data, vad_confidence))
self.input_stream = sd.InputStream(
samplerate=SAMPLE_RATE,
channels=1,
callback=audio_callback_for_sdInputStream,
blocksize=int(SAMPLE_RATE * VAD_SIZE / 1000),
)
@property
def messages(self) -> Sequence[dict[str, str]]:
return self._messages
@classmethod
def from_config(cls, config: GladosConfig):
personality_preprompt = []
for line in config.personality_preprompt:
personality_preprompt.append(
{"role": list(line.keys())[0], "content": list(line.values())[0]}
)
return cls(
voice_model=config.voice_model,
speaker_id=config.speaker_id,
completion_url=config.completion_url,
model=config.model,
api_key=config.api_key,
wake_word=config.wake_word,
personality_preprompt=personality_preprompt,
announcement=config.announcement,
interruptible=config.interruptible,
)
@classmethod
def from_yaml(cls, path: str):
return cls.from_config(GladosConfig.from_yaml(path))
def start_listen_event_loop(self):
"""
Starts the Glados voice assistant, continuously listening for input and responding.
"""
self.input_stream.start()
logger.success("Audio Modules Operational")
logger.success("Listening...")
# Loop forever, but is 'paused' when new samples are not available
try:
while True:
sample, vad_confidence = self._sample_queue.get()
self._handle_audio_sample(sample, vad_confidence)
except KeyboardInterrupt:
self.shutdown_event.set()
self.input_stream.stop()
def _handle_audio_sample(self, sample: np.ndarray, vad_confidence: bool):
"""
Handles the processing of each audio sample.
If the recording has not started, the sample is added to the circular buffer.
If the recording has started, the sample is added to the samples list, and the pause
limit is checked to determine when to process the detected audio.
Args:
sample (np.ndarray): The audio sample to process.
vad_confidence (bool): Whether voice activity is detected in the sample.
"""
if not self._recording_started:
self._manage_pre_activation_buffer(sample, vad_confidence)
else:
self._process_activated_audio(sample, vad_confidence)
def _manage_pre_activation_buffer(self, sample: np.ndarray, vad_confidence: bool):
"""
Manages the circular buffer of audio samples before activation (i.e., before the voice is detected).
If the buffer is full, the oldest sample is discarded to make room for new ones.
If voice activity is detected, the audio stream is stopped, and the processing is turned off
to prevent overlap with the LLM and TTS threads.
Args:
sample (np.ndarray): The audio sample to process.
vad_confidence (bool): Whether voice activity is detected in the sample.
"""
if self._buffer.full():
self._buffer.get() # Discard the oldest sample to make room for new ones
self._buffer.put(sample)
if vad_confidence: # Voice activity detected
sd.stop() # Stop the audio stream to prevent overlap
self.processing = (
False # Turns off processing on threads for the LLM and TTS!!!
)
self._samples = list(self._buffer.queue)
self._recording_started = True
def _process_activated_audio(self, sample: np.ndarray, vad_confidence: bool):
"""
Processes audio samples after activation (i.e., after the wake word is detected).
Uses a pause limit to determine when to process the detected audio. This is to
ensure that the entire sentence is captured before processing, including slight gaps.
"""
self._samples.append(sample)
if not vad_confidence:
self._gap_counter += 1
if self._gap_counter >= PAUSE_LIMIT // VAD_SIZE:
self._process_detected_audio()
else:
self._gap_counter = 0
def _wakeword_detected(self, text: str) -> bool:
"""
Calculates the nearest Levenshtein distance from the detected text to the wake word.
This is used as 'Glados' is not a common word, and Whisper can sometimes mishear it.
"""
assert self.wake_word is not None, "Wake word should not be None"
words = text.split()
closest_distance = min(
[distance(word.lower(), self.wake_word) for word in words]
)
return closest_distance < SIMILARITY_THRESHOLD
def _process_detected_audio(self):
"""
Processes the detected audio and generates a response.
This function is called when the pause limit is reached after the voice stops.
It transcribes the audio and checks for the wake word if it is set. If the wake
word is detected, the detected text is sent to the LLM model for processing.
The audio stream is then reset, and listening continues.
"""
logger.debug("Detected pause after speech. Processing...")
self.input_stream.stop()
detected_text = self.asr(self._samples)
if detected_text:
logger.success(f"ASR text: '{detected_text}'")
if self.wake_word and not self._wakeword_detected(detected_text):
logger.info(f"Required wake word {self.wake_word=} not detected.")
else:
self.llm_queue.put(detected_text)
self.processing = True
self.currently_speaking = True
if not self.interruptible:
while self.currently_speaking:
time.sleep(PAUSE_TIME)
self.reset()
self.input_stream.start()
def asr(self, samples: List[np.ndarray]) -> str:
"""
Performs automatic speech recognition on the collected samples.
"""
audio = np.concatenate(samples)
detected_text = self._asr_model.transcribe(audio)
return detected_text
def reset(self):
"""
Resets the recording state and clears buffers.
"""
logger.debug("Resetting recorder...")
self._recording_started = False
self._samples.clear()
self._gap_counter = 0
with self._buffer.mutex:
self._buffer.queue.clear()
def process_TTS_thread(self):
"""
Processes the LLM generated text using the TTS model.
Runs in a separate thread to allow for continuous processing of the LLM output.
"""
assistant_text = [] # The text generated by the assistant, to be spoken by the TTS
system_text = [] # The text logged to the system prompt when the TTS is interrupted
finished = False # a flag to indicate when the TTS has finished speaking
interrupted = (
False # a flag to indicate when the TTS was interrupted by new input
)
while not self.shutdown_event.is_set():
try:
start = time.time()
generated_text = self.tts_queue.get(timeout=PAUSE_TIME)
if (
generated_text == "<EOS>"
): # End of stream token generated in process_LLM_thread
finished = True
elif not generated_text:
logger.warning("Empty string sent to TTS") # should not happen!
else:
logger.success(f"LLM text: {generated_text}")
logger.info(f"LLM inference time: {(time.time() - start):.2f}s")
start = time.time()
spoken_text = self._stc.text_to_spoken(generated_text)
audio = self._tts.generate_speech_audio(spoken_text)
logger.info(
f"TTS Complete, inference: {(time.time() - start):.2f}, length: {len(audio) / self._tts.rate:.2f}s"
)
total_samples = len(audio)
if total_samples:
sd.play(audio, self._tts.rate)
interrupted, percentage_played = self.percentage_played(
total_samples
)
if interrupted:
clipped_text = self.clip_interrupted_sentence(
spoken_text, percentage_played
)
logger.info(
f"TTS interrupted at {percentage_played}%: {clipped_text}"
)
system_text = copy.deepcopy(assistant_text)
system_text.append(clipped_text)
finished = True
assistant_text.append(spoken_text)
if finished:
self.messages.append(
{"role": "assistant", "content": " ".join(assistant_text)}
)
# if interrupted:
# self.messages.append(
# {
# "role": "system",
# "content": f"USER INTERRUPTED GLADOS, TEXT DELIVERED: {' '.join(system_text)}",
# }
# )
assistant_text = []
finished = False
interrupted = False
self.currently_speaking = False
except queue.Empty:
pass
def clip_interrupted_sentence(
self, generated_text: str, percentage_played: float
) -> str:
"""
Clips the generated text if the TTS was interrupted.
Args:
generated_text (str): The generated text from the LLM model.
percentage_played (float): The percentage of the audio played before the TTS was interrupted.
Returns:
str: The clipped text.
"""
tokens = generated_text.split()
words_to_print = round((percentage_played / 100) * len(tokens))
text = " ".join(tokens[:words_to_print])
# If the TTS was cut off, make that clear
if words_to_print < len(tokens):
text = text + "<INTERRUPTED>"
return text
def percentage_played(self, total_samples: int) -> Tuple[bool, int]:
interrupted = False
start_time = time.time()
played_samples = 0.0
try:
stream = sd.get_stream()
while stream and stream.active:
time.sleep(PAUSE_TIME)
if self.processing is False:
sd.stop()
with self.tts_queue.mutex:
self.tts_queue.queue.clear()
interrupted = True
break
try:
if not stream.active:
break
except sd.PortAudioError:
break
except (sd.PortAudioError, RuntimeError):
logger.debug("Audio stream already closed or invalid")
elapsed_time = (
time.time() - start_time + 0.12
) # slight delay to ensure all audio timing is correct
played_samples = elapsed_time * self._tts.rate
# Calculate percentage of audio played
percentage_played = min(int((played_samples / total_samples * 100)), 100)
return interrupted, percentage_played
def process_LLM(self):
"""
Processes the detected text using the LLM model.
"""
while not self.shutdown_event.is_set():
try:
detected_text = self.llm_queue.get(timeout=0.1)
self.messages.append({"role": "user", "content": detected_text})
data = {
"model": self.model,
"stream": True,
"messages": self.messages,
}
logger.debug(f"starting request on {self.messages=}")
logger.debug("Performing request to LLM server...")
# Perform the request and process the stream
with requests.post(
self.completion_url,
headers=self.prompt_headers,
json=data,
stream=True,
) as response:
sentence = []
for line in response.iter_lines():
if self.processing is False:
break # If the stop flag is set from new voice input, halt processing
if line: # Filter out empty keep-alive new lines
try:
cleaned_line = self._clean_raw_bytes(line)
if cleaned_line: # Add check for empty cleaned line
chunk = self._process_chunk(cleaned_line)
if chunk:
sentence.append(chunk)
# If there is a pause token, send the sentence to the TTS queue
if chunk in [
",",
".",
"!",
"?",
":",
";",
"?!",
"\n",
"\n\n",
]:
self._process_sentence(sentence)
sentence = []
except Exception as e:
logger.error(f"Error processing line: {e}")
continue
if self.processing and sentence:
self._process_sentence(sentence)
self.tts_queue.put("<EOS>") # Add end of stream token to the queue
except queue.Empty:
time.sleep(PAUSE_TIME)
def _process_sentence(self, current_sentence: List[str]):
"""
Join text, remove inflections and actions, and send to the TTS queue.
The LLM like to *whisper* things or (scream) things, and prompting is not a 100% fix.
We use regular expressions to remove text between ** and () to clean up the text.
Finally, we remove any non-alphanumeric characters/punctuation and send the text
to the TTS queue.
"""
sentence = "".join(current_sentence)
sentence = re.sub(r"\*.*?\*|\(.*?\)", "", sentence)
sentence = (
sentence.replace("\n\n", ". ")
.replace("\n", ". ")
.replace(" ", " ")
.replace(":", " ")
)
if sentence:
self.tts_queue.put(sentence)
def _clean_raw_bytes(self, line):
"""
Cleans the raw bytes from the server and converts to OpenAI format.
Args:
line (bytes): The raw bytes from the server
Returns:
dict or None: Parsed JSON response in OpenAI format, or None if parsing fails
"""
try:
# Handle OpenAI format
if line.startswith(b"data: "):
json_str = line.decode("utf-8")[6:] # Remove 'data: ' prefix
return json.loads(json_str)
# Handle Ollama format
else:
return json.loads(line.decode("utf-8"))
except Exception as e:
logger.warning(f"Failed to parse server response: {e}")
return None
def _process_chunk(self, line):
"""
Processes a single line of text from the LLM server.
Args:
line (dict): The line of text from the LLM server.
"""
if not line or not isinstance(line, dict):
return None
try:
# Handle OpenAI format
if "choices" in line:
content = line.get("choices", [{}])[0].get("delta", {}).get("content")
return content if content else None
# Handle Ollama format
else:
content = line.get("message", {}).get("content")
return content if content else None
except Exception as e:
logger.error(f"Error processing chunk: {e}")
return None
def start() -> None:
"""Set up the LLM server and start GlaDOS."""
glados_config = GladosConfig.from_yaml("glados_config.yml")
glados = Glados.from_config(glados_config)
glados.start_listen_event_loop()
if __name__ == "__main__":
start()