forked from castorini/anserini
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_regression.py
405 lines (339 loc) · 16.6 KB
/
run_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
#
# Anserini: A Lucene toolkit for reproducible information retrieval research
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from __future__ import print_function
import argparse
import hashlib
import itertools
import logging
import os
import re
import stat
import tarfile
import time
from multiprocessing import Pool
from subprocess import call, Popen, PIPE
from urllib.request import urlretrieve
import yaml
from tqdm import tqdm
logger = logging.getLogger('regression_test')
logger.setLevel(logging.INFO)
# create console handler with a higher log level
ch = logging.StreamHandler()
ch.setLevel(logging.INFO)
formatter = logging.Formatter('%(asctime)s %(levelname)s [python] %(message)s')
ch.setFormatter(formatter)
# add the handlers to the logger
logger.addHandler(ch)
# These are the locations where corpora can be found on specific machines.
# There is no need to specify them on a per-file basis.
CORPUS_ROOTS = [
'', # here, stored in this directory
'/collection/', # on hops
'/mnt/', # on tjena
'/tuna1/', # on tuna
'/store/', # on orca
'/System/Volumes/Data/store' # for new organization of directories in macOS Monterey
]
INDEX_COMMAND = 'target/appassembler/bin/IndexCollection'
INDEX_HNSW_COMMAND = 'target/appassembler/bin/IndexHnswDenseVectors'
INDEX_STATS_COMMAND = 'target/appassembler/bin/IndexReaderUtils'
SEARCH_COMMAND = 'target/appassembler/bin/SearchCollection'
SEARCH_HNSW_COMMAND = 'target/appassembler/bin/SearchHnswDenseVectors'
def is_close(a, b, rel_tol=1e-09, abs_tol=0.0):
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
def is_close_lucene8(a, b):
return abs(a-b) <= 0.001
def check_output(command):
# Python 2.6 compatible subprocess.check_output
process = Popen(command, shell=True, stdout=PIPE)
output, err = process.communicate()
if process.returncode == 0: # success
return output
else:
raise RuntimeError("Command {0} running unsuccessfully".format(command))
def construct_index_path(yaml_data):
index_path = yaml_data['index_path']
if not index_path or not os.path.exists(index_path):
for input_root in CORPUS_ROOTS:
index_path = os.path.join(input_root, yaml_data['index_path'])
if os.path.exists(index_path):
break
return index_path
def construct_indexing_command(yaml_data, args):
corpus_path = None
if args.corpus_path:
if os.path.exists(args.corpus_path):
corpus_path = args.corpus_path
else:
for input_root in CORPUS_ROOTS:
test_path = os.path.join(input_root, yaml_data['corpus_path'])
if os.path.exists(test_path):
corpus_path = test_path
break
if not corpus_path:
raise RuntimeError("Unable to find the corpus!")
# Determine the number of indexing threads, either from the command line,
# or reading the YAML config.
if args.index_threads != -1:
threads = args.index_threads
else:
threads = yaml_data['index_threads']
if not os.path.exists('indexes'):
os.makedirs('indexes')
if yaml_data['collection_class'] == 'JsonDenseVectorCollection':
root_cmd = INDEX_HNSW_COMMAND
else:
root_cmd = INDEX_COMMAND
index_command = [
root_cmd,
'-collection', yaml_data['collection_class'],
'-generator', yaml_data['generator_class'],
'-threads', str(threads),
'-input', corpus_path,
'-index', yaml_data['index_path'],
yaml_data['index_options']
]
return index_command
def construct_runfile_path(corpus, id, model_name):
return os.path.join('runs/', 'run.{0}.{1}.{2}'.format(corpus, id, model_name))
def construct_search_commands(yaml_data):
ranking_commands = [
[
SEARCH_HNSW_COMMAND if 'VectorQueryGenerator' in model['params'] else SEARCH_COMMAND,
'-index', construct_index_path(yaml_data),
'-topics', os.path.join('tools/topics-and-qrels', topic_set['path']),
'-topicreader', topic_set['topic_reader'] if 'topic_reader' in topic_set and topic_set['topic_reader'] else yaml_data['topic_reader'],
'-output', construct_runfile_path(yaml_data['corpus'], topic_set['id'], model['name']),
model['params']
]
for (model, topic_set) in list(itertools.product(yaml_data['models'], yaml_data['topics']))
]
return ranking_commands
def construct_convert_commands(yaml_data):
converting_commands = [
[
conversion['command'],
'--index', construct_index_path(yaml_data),
'--topics', topic_set['id'],
'--input', construct_runfile_path(yaml_data['corpus'], topic_set['id'], model['name']) + conversion['in_file_ext'],
'--output', construct_runfile_path(yaml_data['corpus'], topic_set['id'], model['name']) + conversion['out_file_ext'],
conversion['params'] if 'params' in conversion and conversion['params'] else '',
topic_set['convert_params'] if 'convert_params' in topic_set and topic_set['convert_params'] else '',
]
for (model, topic_set, conversion) in list(itertools.product(yaml_data['models'], yaml_data['topics'], yaml_data['conversions']))
]
return converting_commands
def evaluate_and_verify(yaml_data, dry_run):
fail_str = '\033[91m[FAIL]\033[0m '
ok_str = ' [OK] '
okish_str = ' \033[94m[OK*]\033[0m '
failures = False
logger.info('='*10 + ' Verifying Results: ' + yaml_data['corpus'] + ' ' + '='*10)
for model in yaml_data['models']:
for i, topic_set in enumerate(yaml_data['topics']):
for metric in yaml_data['metrics']:
eval_cmd = [
os.path.join(metric['command']), metric['params'] if 'params' in metric and metric['params'] else '',
os.path.join('tools/topics-and-qrels', topic_set['qrel']) if 'qrel' in topic_set and topic_set['qrel'] else '',
construct_runfile_path(yaml_data['corpus'], topic_set['id'], model['name']) + (yaml_data['conversions'][-1]['out_file_ext'] if 'conversions' in yaml_data and yaml_data['conversions'][-1]['out_file_ext'] else '')
]
if dry_run:
logger.info(' '.join(eval_cmd))
continue
out = [line for line in
check_output(' '.join(eval_cmd)).decode('utf-8').split('\n') if line.strip()][-1]
if not out.strip():
continue
eval_out = out.strip().split(metric['separator'])[metric['parse_index']]
expected = round(model['results'][metric['metric']][i], metric['metric_precision'])
actual = round(float(eval_out), metric['metric_precision'])
# For HNSW, we only print to third digit
if 'VectorQueryGenerator' in model['params']:
result_str = 'expected: {0:.3f} actual: {1:.3f} - metric: {2:<8} model: {3} topics: {4}'.format(
expected, actual, metric['metric'], model['name'], topic_set['id'])
else:
result_str = 'expected: {0:.4f} actual: {1:.4f} - metric: {2:<8} model: {3} topics: {4}'.format(
expected, actual, metric['metric'], model['name'], topic_set['id'])
# For inverted indexes, we expect scores to match precisely.
# For HNSW, be more tolerant, but as long as the actual score is higher than the expected score,
# let the test pass.
if is_close(expected, actual) or \
('VectorQueryGenerator' in model['params'] and is_close(expected, actual, abs_tol=0.006)) or \
('VectorQueryGenerator' in model['params'] and actual > expected):
logger.info(ok_str + result_str)
else:
if args.lucene8 and is_close_lucene8(expected, actual):
logger.info(okish_str + result_str)
else:
logger.error(fail_str + result_str)
failures = True
end = time.time()
if not dry_run:
if failures:
logger.info(f'\033[91mFailed tests!\033[0m Total elapsed time: {end - start:.0f}s')
else:
logger.info(f'All Tests Passed! Total elapsed time: {end - start:.0f}s')
def run_search(cmd):
logger.info(' '.join(cmd))
call(' '.join(cmd), shell=True)
def run_convert(cmd):
logger.info(' '.join(cmd))
call(' '.join(cmd), shell=True)
# https://gist.github.com/leimao/37ff6e990b3226c2c9670a2cd1e4a6f5
class TqdmUpTo(tqdm):
def update_to(self, b=1, bsize=1, tsize=None):
"""
b : int, optional
Number of blocks transferred so far [default: 1].
bsize : int, optional
Size of each block (in tqdm units) [default: 1].
tsize : int, optional
Total size (in tqdm units). If [default: None] remains unchanged.
"""
if tsize is not None:
self.total = tsize
self.update(b * bsize - self.n) # will also set self.n = b * bsize
# For large files, we need to compute MD5 block by block. See:
# https://stackoverflow.com/questions/1131220/get-md5-hash-of-big-files-in-python
def compute_md5(file, block_size=2**20):
m = hashlib.md5()
with open(file, 'rb') as f:
while True:
buf = f.read(block_size)
if not buf:
break
m.update(buf)
return m.hexdigest()
def download_url(url, save_dir, local_filename=None, md5=None, force=False, verbose=True):
# If caller does not specify local filename, figure it out from the download URL:
if not local_filename:
filename = url.split('/')[-1]
filename = re.sub('\\?dl=1$', '', filename) # Remove the Dropbox 'force download' parameter
else:
# Otherwise, use the specified local_filename:
filename = local_filename
destination_path = os.path.join(save_dir, filename)
if verbose:
logger.info(f'Downloading {url} to {destination_path}...')
# Check to see if file already exists, if so, simply return (quietly) unless force=True, in which case we remove
# destination file and download fresh copy.
if os.path.exists(destination_path):
if verbose:
logger.info(f'{destination_path} already exists!')
if not force:
if verbose:
logger.info(f'Skipping download.')
return destination_path
if verbose:
logger.info(f'force=True, removing {destination_path}; fetching fresh copy...')
os.remove(destination_path)
with TqdmUpTo(unit='B', unit_scale=True, unit_divisor=1024, miniters=1, desc=filename) as t:
urlretrieve(url, filename=destination_path, reporthook=t.update_to)
if md5:
md5_computed = compute_md5(destination_path)
assert md5_computed == md5, f'{destination_path} does not match checksum! Expecting {md5} got {md5_computed}.'
return destination_path
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Run Anserini regression tests.')
parser.add_argument('--regression', required=True, help='Name of the regression test.')
parser.add_argument('--corpus-path', dest='corpus_path', default='', help='Override corpus path from YAML')
parser.add_argument('--download', dest='download', action='store_true', help='Build index.')
parser.add_argument('--index', dest='index', action='store_true', help='Build index.')
parser.add_argument('--index-threads', type=int, default=-1, help='Override number of indexing threads from YAML')
parser.add_argument('--verify', dest='verify', action='store_true', help='Verify index statistics.')
parser.add_argument('--search', dest='search', action='store_true', help='Search and verify results.')
parser.add_argument('--search-pool', dest='search_pool', type=int, default=4,
help='Number of ranking runs to execute in parallel.')
parser.add_argument('--convert-pool', dest='convert_pool', type=int, default=4,
help='Number of converting runs to execute in parallel.')
parser.add_argument('--dry-run', dest='dry_run', action='store_true',
help='Output commands without actual execution.')
parser.add_argument('--lucene8', dest='lucene8', action='store_true', help='Enable more lenient score matching for Lucene 8 index compatibility.')
args = parser.parse_args()
start = time.time()
with open('src/main/resources/regression/{}.yaml'.format(args.regression)) as f:
yaml_data = yaml.safe_load(f)
if args.download:
logger.info('='*10 + ' Downloading Corpus ' + '='*10)
if not yaml_data['download_url']:
raise ValueError('Corpus download URL known!')
url = yaml_data['download_url']
download_url(url, 'collections', md5=yaml_data['download_checksum'])
filename = url.split('/')[-1]
local_tarball = os.path.join('collections', filename)
logger.info(f'Extracting {local_tarball}...')
tarball = tarfile.open(local_tarball)
tarball.extractall('collections')
tarball.close()
# e.g., MS MARCO V2: need to rename the corpus
if 'download_corpus' in yaml_data:
src = os.path.join('collections', yaml_data['download_corpus'])
dest = os.path.join('collections', yaml_data['corpus'])
logger.info(f'Renaming {src} to {dest}')
os.chmod(src, stat.S_IRUSR | stat.S_IWUSR | stat.S_IXUSR)
os.rename(src, dest)
path = os.path.join('collections', yaml_data['corpus'])
logger.info(f'Corpus path is {path}')
args.corpus_path = path
# Build indexes.
if args.index:
logger.info('='*10 + ' Indexing ' + '='*10)
indexing_command = ' '.join(construct_indexing_command(yaml_data, args))
logger.info(indexing_command)
if not args.dry_run:
call(indexing_command, shell=True)
# Verify index statistics.
if args.verify:
logger.info('='*10 + ' Verifying Index ' + '='*10)
if yaml_data['collection_class'] == 'JsonDenseVectorCollection':
logger.info('Skipping verification step for HNSW dense indexes.')
else:
index_utils_command = [INDEX_STATS_COMMAND, '-index', construct_index_path(yaml_data), '-stats']
verification_command = ' '.join(index_utils_command)
logger.info(verification_command)
if not args.dry_run:
out = check_output(' '.join(index_utils_command)).decode('utf-8').split('\n')
for line in out:
stat = line.split(':')[0]
if stat in yaml_data['index_stats']:
value = int(line.split(':')[1])
if value != yaml_data['index_stats'][stat]:
print('{}: expected={}, actual={}'.format(stat, yaml_data['index_stats'][stat], value))
assert value == yaml_data['index_stats'][stat]
logger.info(line)
logger.info('Index statistics successfully verified!')
# Search and verify results.
if args.search:
logger.info('='*10 + ' Ranking ' + '='*10)
if args.lucene8:
logger.info('Enabling Lucene 8 index compatibility.')
search_cmds = construct_search_commands(yaml_data)
if args.dry_run:
for cmd in search_cmds:
logger.info(' '.join(cmd))
else:
with Pool(args.search_pool) as p:
p.map(run_search, search_cmds)
if 'conversions' in yaml_data and yaml_data['conversions']:
logger.info('='*10 + ' Converting ' + '='*10)
convert_cmds = construct_convert_commands(yaml_data)
if args.dry_run:
for cmd in convert_cmds:
logger.info(' '.join(cmd))
else:
with Pool(args.convert_pool) as p:
p.map(run_convert, convert_cmds)
evaluate_and_verify(yaml_data, args.dry_run)