forked from google-deepmind/alphafold
-
Notifications
You must be signed in to change notification settings - Fork 10
/
run_docker.py
267 lines (229 loc) · 10.7 KB
/
run_docker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# Copyright 2021 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Docker launch script for Alphafold docker image."""
import os
import pathlib
import signal
from typing import Tuple
from absl import app
from absl import flags
from absl import logging
import docker
from docker import types
flags.DEFINE_bool(
'use_gpu', True, 'Enable NVIDIA runtime to run with GPUs.')
flags.DEFINE_enum('models_to_relax', 'best', ['best', 'all', 'none'],
'The models to run the final relaxation step on. '
'If `all`, all models are relaxed, which may be time '
'consuming. If `best`, only the most confident model is '
'relaxed. If `none`, relaxation is not run. Turning off '
'relaxation might result in predictions with '
'distracting stereochemical violations but might help '
'in case you are having issues with the relaxation '
'stage.')
flags.DEFINE_bool(
'enable_gpu_relax', True, 'Run relax on GPU if GPU is enabled.')
flags.DEFINE_string(
'gpu_devices', 'all',
'Comma separated list of devices to pass to NVIDIA_VISIBLE_DEVICES.')
flags.DEFINE_list(
'fasta_paths', None, 'Paths to FASTA files, each containing a prediction '
'target that will be folded one after another. If a FASTA file contains '
'multiple sequences, then it will be folded as a multimer. Paths should be '
'separated by commas. All FASTA paths must have a unique basename as the '
'basename is used to name the output directories for each prediction.')
flags.DEFINE_string(
'output_dir', '/tmp/alphafold',
'Path to a directory that will store the results.')
flags.DEFINE_string(
'data_dir', None,
'Path to directory with supporting data: AlphaFold parameters and genetic '
'and template databases. Set to the target of download_all_databases.sh.')
flags.DEFINE_string(
'docker_image_name', 'alphafold', 'Name of the AlphaFold Docker image.')
flags.DEFINE_string(
'max_template_date', None,
'Maximum template release date to consider (ISO-8601 format: YYYY-MM-DD). '
'Important if folding historical test sets.')
flags.DEFINE_enum(
'db_preset', 'full_dbs', ['full_dbs', 'reduced_dbs'],
'Choose preset MSA database configuration - smaller genetic database '
'config (reduced_dbs) or full genetic database config (full_dbs)')
flags.DEFINE_enum(
'model_preset', 'monomer',
['monomer', 'monomer_casp14', 'monomer_ptm', 'multimer'],
'Choose preset model configuration - the monomer model, the monomer model '
'with extra ensembling, monomer model with pTM head, or multimer model')
flags.DEFINE_integer('num_multimer_predictions_per_model', 5, 'How many '
'predictions (each with a different random seed) will be '
'generated per model. E.g. if this is 2 and there are 5 '
'models then there will be 10 predictions per input. '
'Note: this FLAG only applies if model_preset=multimer')
flags.DEFINE_boolean(
'benchmark', False,
'Run multiple JAX model evaluations to obtain a timing that excludes the '
'compilation time, which should be more indicative of the time required '
'for inferencing many proteins.')
flags.DEFINE_boolean(
'use_precomputed_msas', False,
'Whether to read MSAs that have been written to disk instead of running '
'the MSA tools. The MSA files are looked up in the output directory, so it '
'must stay the same between multiple runs that are to reuse the MSAs. '
'WARNING: This will not check if the sequence, database or configuration '
'have changed.')
flags.DEFINE_string(
'docker_user', f'{os.geteuid()}:{os.getegid()}',
'UID:GID with which to run the Docker container. The output directories '
'will be owned by this user:group. By default, this is the current user. '
'Valid options are: uid or uid:gid, non-numeric values are not recognised '
'by Docker unless that user has been created within the container.')
FLAGS = flags.FLAGS
_ROOT_MOUNT_DIRECTORY = '/mnt/'
def _create_mount(mount_name: str, path: str) -> Tuple[types.Mount, str]:
"""Create a mount point for each file and directory used by the model."""
path = pathlib.Path(path).absolute()
target_path = pathlib.Path(_ROOT_MOUNT_DIRECTORY, mount_name)
if path.is_dir():
source_path = path
mounted_path = target_path
else:
source_path = path.parent
mounted_path = pathlib.Path(target_path, path.name)
if not source_path.exists():
raise ValueError(f'Failed to find source directory "{source_path}" to '
'mount in Docker container.')
logging.info('Mounting %s -> %s', source_path, target_path)
mount = types.Mount(target=str(target_path), source=str(source_path),
type='bind', read_only=True)
return mount, str(mounted_path)
def main(argv):
if len(argv) > 1:
raise app.UsageError('Too many command-line arguments.')
# You can individually override the following paths if you have placed the
# data in locations other than the FLAGS.data_dir.
# Path to the Uniref90 database for use by JackHMMER.
uniref90_database_path = os.path.join(
FLAGS.data_dir, 'uniref90', 'uniref90.fasta')
# Path to the Uniprot database for use by JackHMMER.
uniprot_database_path = os.path.join(
FLAGS.data_dir, 'uniprot', 'uniprot.fasta')
# Path to the MGnify database for use by JackHMMER.
mgnify_database_path = os.path.join(
FLAGS.data_dir, 'mgnify', 'mgy_clusters_2022_05.fa')
# Path to the BFD database for use by HHblits.
bfd_database_path = os.path.join(
FLAGS.data_dir, 'bfd',
'bfd_metaclust_clu_complete_id30_c90_final_seq.sorted_opt')
# Path to the Small BFD database for use by JackHMMER.
small_bfd_database_path = os.path.join(
FLAGS.data_dir, 'small_bfd', 'bfd-first_non_consensus_sequences.fasta')
# Path to the Uniref30 database for use by HHblits.
uniref30_database_path = os.path.join(
FLAGS.data_dir, 'uniref30', 'UniRef30_2021_03')
# Path to the PDB70 database for use by HHsearch.
pdb70_database_path = os.path.join(FLAGS.data_dir, 'pdb70', 'pdb70')
# Path to the PDB seqres database for use by hmmsearch.
pdb_seqres_database_path = os.path.join(
FLAGS.data_dir, 'pdb_seqres', 'pdb_seqres.txt')
# Path to a directory with template mmCIF structures, each named <pdb_id>.cif.
template_mmcif_dir = os.path.join(FLAGS.data_dir, 'pdb_mmcif', 'mmcif_files')
# Path to a file mapping obsolete PDB IDs to their replacements.
obsolete_pdbs_path = os.path.join(FLAGS.data_dir, 'pdb_mmcif', 'obsolete.dat')
alphafold_path = pathlib.Path(__file__).parent.parent
data_dir_path = pathlib.Path(FLAGS.data_dir)
if alphafold_path == data_dir_path or alphafold_path in data_dir_path.parents:
raise app.UsageError(
f'The download directory {FLAGS.data_dir} should not be a subdirectory '
f'in the AlphaFold repository directory. If it is, the Docker build is '
f'slow since the large databases are copied during the image creation.')
mounts = []
command_args = []
# Mount each fasta path as a unique target directory.
target_fasta_paths = []
for i, fasta_path in enumerate(FLAGS.fasta_paths):
mount, target_path = _create_mount(f'fasta_path_{i}', fasta_path)
mounts.append(mount)
target_fasta_paths.append(target_path)
command_args.append(f'--fasta_paths={",".join(target_fasta_paths)}')
database_paths = [
('uniref90_database_path', uniref90_database_path),
('mgnify_database_path', mgnify_database_path),
('data_dir', FLAGS.data_dir),
('template_mmcif_dir', template_mmcif_dir),
('obsolete_pdbs_path', obsolete_pdbs_path),
]
if FLAGS.model_preset == 'multimer':
database_paths.append(('uniprot_database_path', uniprot_database_path))
database_paths.append(('pdb_seqres_database_path',
pdb_seqres_database_path))
else:
database_paths.append(('pdb70_database_path', pdb70_database_path))
if FLAGS.db_preset == 'reduced_dbs':
database_paths.append(('small_bfd_database_path', small_bfd_database_path))
else:
database_paths.extend([
('uniref30_database_path', uniref30_database_path),
('bfd_database_path', bfd_database_path),
])
for name, path in database_paths:
if path:
mount, target_path = _create_mount(name, path)
mounts.append(mount)
command_args.append(f'--{name}={target_path}')
output_target_path = os.path.join(_ROOT_MOUNT_DIRECTORY, 'output')
mounts.append(types.Mount(output_target_path, FLAGS.output_dir, type='bind'))
use_gpu_relax = FLAGS.enable_gpu_relax and FLAGS.use_gpu
command_args.extend([
f'--output_dir={output_target_path}',
f'--max_template_date={FLAGS.max_template_date}',
f'--db_preset={FLAGS.db_preset}',
f'--model_preset={FLAGS.model_preset}',
f'--benchmark={FLAGS.benchmark}',
f'--use_precomputed_msas={FLAGS.use_precomputed_msas}',
f'--num_multimer_predictions_per_model={FLAGS.num_multimer_predictions_per_model}',
f'--models_to_relax={FLAGS.models_to_relax}',
f'--use_gpu_relax={use_gpu_relax}',
'--logtostderr',
])
client = docker.from_env()
device_requests = [
docker.types.DeviceRequest(driver='nvidia', capabilities=[['gpu']])
] if FLAGS.use_gpu else None
container = client.containers.run(
image=FLAGS.docker_image_name,
command=command_args,
device_requests=device_requests,
remove=True,
detach=True,
mounts=mounts,
user=FLAGS.docker_user,
environment={
'NVIDIA_VISIBLE_DEVICES': FLAGS.gpu_devices,
# The following flags allow us to make predictions on proteins that
# would typically be too long to fit into GPU memory.
'TF_FORCE_UNIFIED_MEMORY': '1',
'XLA_PYTHON_CLIENT_MEM_FRACTION': '4.0',
})
# Add signal handler to ensure CTRL+C also stops the running container.
signal.signal(signal.SIGINT,
lambda unused_sig, unused_frame: container.kill())
for line in container.logs(stream=True):
logging.info(line.strip().decode('utf-8'))
if __name__ == '__main__':
flags.mark_flags_as_required([
'data_dir',
'fasta_paths',
'max_template_date',
])
app.run(main)