forked from theAIGuysCode/yolov4-deepsort
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconvert_tflite.py
80 lines (64 loc) · 2.94 KB
/
convert_tflite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import tensorflow as tf
from absl import app, flags, logging
from absl.flags import FLAGS
import numpy as np
import cv2
from core.yolov4 import YOLOv4, YOLOv3, YOLOv3_tiny, decode
import core.utils as utils
import os
from core.config import cfg
flags.DEFINE_string('weights', './checkpoints/yolov4-416', 'path to weights file')
flags.DEFINE_string('output', './checkpoints/yolov4-416-fp32.tflite', 'path to output')
flags.DEFINE_integer('input_size', 416, 'path to output')
flags.DEFINE_string('quantize_mode', 'float32', 'quantize mode (int8, float16, float32)')
flags.DEFINE_string('dataset', "/Volumes/Elements/data/coco_dataset/coco/5k.txt", 'path to dataset')
def representative_data_gen():
fimage = open(FLAGS.dataset).read().split()
for input_value in range(10):
if os.path.exists(fimage[input_value]):
original_image=cv2.imread(fimage[input_value])
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
image_data = utils.image_preprocess(np.copy(original_image), [FLAGS.input_size, FLAGS.input_size])
img_in = image_data[np.newaxis, ...].astype(np.float32)
print("calibration image {}".format(fimage[input_value]))
yield [img_in]
else:
continue
def save_tflite():
converter = tf.lite.TFLiteConverter.from_saved_model(FLAGS.weights)
if FLAGS.quantize_mode == 'float16':
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_types = [tf.compat.v1.lite.constants.FLOAT16]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS]
converter.allow_custom_ops = True
elif FLAGS.quantize_mode == 'int8':
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
converter.optimizations = [tf.lite.Optimize.DEFAULT]
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS, tf.lite.OpsSet.SELECT_TF_OPS]
converter.allow_custom_ops = True
converter.representative_dataset = representative_data_gen
tflite_model = converter.convert()
open(FLAGS.output, 'wb').write(tflite_model)
logging.info("model saved to: {}".format(FLAGS.output))
def demo():
interpreter = tf.lite.Interpreter(model_path=FLAGS.output)
interpreter.allocate_tensors()
logging.info('tflite model loaded')
input_details = interpreter.get_input_details()
print(input_details)
output_details = interpreter.get_output_details()
print(output_details)
input_shape = input_details[0]['shape']
input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = [interpreter.get_tensor(output_details[i]['index']) for i in range(len(output_details))]
print(output_data)
def main(_argv):
save_tflite()
demo()
if __name__ == '__main__':
try:
app.run(main)
except SystemExit:
pass