-
Notifications
You must be signed in to change notification settings - Fork 119
/
Copy pathmodel.py
executable file
·68 lines (57 loc) · 2.45 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import norm_col_init, weights_init
class A3Clstm(torch.nn.Module):
def __init__(self, num_inputs, action_space, args):
super(A3Clstm, self).__init__()
self.hidden_size = args.hidden_size
self.conv1 = nn.Conv2d(num_inputs, 32, 5, stride=1, padding=2)
self.conv2 = nn.Conv2d(32, 32, 5, stride=1, padding=1)
self.conv3 = nn.Conv2d(32, 64, 4, stride=1, padding=1)
self.conv4 = nn.Conv2d(64, 64, 3, stride=1, padding=1)
self.lstm = nn.LSTMCell(1024, self.hidden_size)
num_outputs = action_space.n
self.critic_linear = nn.Linear(self.hidden_size, 1)
self.actor_linear = nn.Linear(self.hidden_size, num_outputs)
relu_gain = nn.init.calculate_gain("relu")
self.conv1.weight.data.mul_(relu_gain)
self.conv1.bias.data.fill_(0)
self.conv2.weight.data.mul_(relu_gain)
self.conv2.bias.data.fill_(0)
self.conv3.weight.data.mul_(relu_gain)
self.conv3.bias.data.fill_(0)
self.conv4.weight.data.mul_(relu_gain)
self.conv4.bias.data.fill_(0)
self.actor_linear.weight.data = norm_col_init(
self.actor_linear.weight.data, 0.01
)
self.actor_linear.bias.data.fill_(0)
self.critic_linear.weight.data = norm_col_init(
self.critic_linear.weight.data, 1.0
)
self.critic_linear.bias.data.fill_(0)
for name, p in self.named_parameters():
if "lstm" in name:
if "weight_ih" in name:
nn.init.xavier_uniform_(p.data)
elif "weight_hh" in name:
nn.init.orthogonal_(p.data)
elif "bias_ih" in name:
p.data.fill_(0)
# Set forget-gate bias to 1
n = p.size(0)
p.data[(n // 4) : (n // 2)].fill_(1)
elif "bias_hh" in name:
p.data.fill_(0)
self.train()
def forward(self, inputs, hx, cx):
x = F.relu(F.max_pool2d(self.conv1(inputs), 2, 2))
x = F.relu(F.max_pool2d(self.conv2(x), 2, 2))
x = F.relu(F.max_pool2d(self.conv3(x), 2, 2))
x = F.relu(F.max_pool2d(self.conv4(x), 2, 2))
x = x.view(x.size(0), -1)
hx, cx = self.lstm(x, (hx, cx))
x = hx
return self.critic_linear(x), self.actor_linear(x), hx, cx