forked from unisonweb/unison
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBase.u
430 lines (339 loc) · 11.7 KB
/
Base.u
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
Nat.maxNat = 18446744073709551615
(Nat.-) : Nat -> Nat -> Int
(Nat.-) = Nat.sub
Int.maxInt = +9223372036854775807
Int.minInt = -9223372036854775808
-- use Universal == < > >=
-- use Optional None Some
-- Function composition
dot : (b -> c) -> (a -> b) -> a -> c
dot f g x = f (g x)
-- Function composition
andThen : (a -> b) -> (b -> c) -> a -> c
andThen f g x = g (f x)
const : a -> b -> a
const a _ = a
use Tuple Cons
-- namespace Tuple where
Tuple.at1 : Tuple a b -> a
Tuple.at1 = cases Cons a _ -> a
Tuple.at2 : Tuple a (Tuple b c) -> b
Tuple.at2 = cases Cons _ (Cons b _) -> b
Tuple.at3 : Tuple a (Tuple b (Tuple c d)) -> c
Tuple.at3 = cases Cons _ (Cons _ (Cons c _)) -> c
Tuple.at4 : Tuple a (Tuple b (Tuple c (Tuple d e))) -> d
Tuple.at4 = cases Cons _ (Cons _ (Cons _ (Cons d _))) -> d
-- namespace List where
List.map : (a -> b) -> [a] -> [b]
List.map f a =
go i as acc = match List.at i as with
None -> acc
Some a -> go (i + 1) as (acc `snoc` f a)
go 0 a []
List.zip : [a] -> [b] -> [(a,b)]
List.zip as bs =
go acc i = match (at i as, at i bs) with
(None,_) -> acc
(_,None) -> acc
(Some a, Some b) -> go (acc `snoc` (a,b)) (i + 1)
go [] 0
List.insert : Nat -> a -> [a] -> [a]
List.insert i a as = take i as ++ [a] ++ drop i as
List.replace : Nat -> a -> [a] -> [a]
List.replace i a as = take i as ++ [a] ++ drop (i + 1) as
List.slice : Nat -> Nat -> [a] -> [a]
List.slice start stopExclusive s =
take (stopExclusive `Nat.drop` start) (drop start s)
List.unsafeAt : Nat -> [a] -> a
List.unsafeAt n as = match at n as with
Some a -> a
None -> Debug.watch "oh noes" (unsafeAt n as) -- Debug.crash "oh noes!"
List.foldl : (b -> a -> b) -> b -> [a] -> b
List.foldl f b as =
go b i = match List.at i as with
None -> b
Some a -> go (f b a) (i + 1)
go b 0
List.foldb : (a -> b) -> (b -> b -> b) -> b -> [a] -> b
List.foldb f op z as =
if List.size as == 0 then z
else if List.size as == 1 then f (unsafeAt 0 as)
else match halve as with (left, right) ->
foldb f op z left `op` foldb f op z right
List.reverse : [a] -> [a]
List.reverse as = foldl (acc a -> List.cons a acc) [] as
List.indexed : [a] -> [(a, Nat)]
List.indexed as = as `zip` range 0 (size as)
List.sortBy : (a -> b) -> [a] -> [a]
List.sortBy f as =
tweak p = match p with (p1,p2) -> (f p1, p2, p1)
Heap.sort (map tweak (indexed as)) |> map Tuple.at3
List.halve : [a] -> ([a], [a])
List.halve s =
n = size s / 2
(take n s, drop n s)
List.unfold : s -> (s -> Optional (a, s)) -> [a]
List.unfold s0 f =
go f s acc = match f s with
None -> acc
Some (a, s) -> go f s (acc `snoc` a)
go f s0 []
List.uncons : [a] -> Optional (a, [a])
List.uncons as = match at 0 as with
None -> None
Some a -> Some (a, drop 1 as)
List.unsnoc : [a] -> Optional ([a], a)
List.unsnoc as =
i = size (drop 1 as)
match at i as with
None -> None
Some a -> Some (take i as, a)
List.join : [[a]] -> [a]
List.join = foldl (++) []
List.flatMap : (a -> [b]) -> [a] -> [b]
List.flatMap f as = join (map f as)
List.range : Nat -> Nat -> [Nat]
List.range start stopExclusive =
f i = if i < stopExclusive then Some (i, i + 1) else None
unfold start f
List.distinct : [a] -> [a]
List.distinct as =
go i seen acc = match List.at i as with
None -> acc
Some a -> if Set.contains a seen then go (i + 1) seen acc
else go (i + 1) (Set.insert a seen) (acc `snoc` a)
go 0 Set.empty []
-- Joins a list of lists in a "fair diagonal" fashion.
-- Adapted from the Haskell version written by Luke Palmer.
List.diagonal : [[a]] -> [a]
List.diagonal =
let
x = 23
stripe = cases
[] -> []
[] +: xxs -> stripe xxs
(x +: xs) +: xxs -> cons [x] (zipCons xs (stripe xxs))
zipCons xs ys = match (xs, ys) with
([], ys) -> ys
(xs, []) -> map (x -> [x]) xs
(x +: xs, y +: ys) -> cons (cons x y) (zipCons xs ys)
List.join `dot` stripe
-- -- > List.foldb "" (t t2 -> "(" ++ t ++ " " ++ t2 ++ ")") (x -> x) ["Alice", "Bob", "Carol", "Dave", "Eve", "Frank", "Gerald", "Henry"]
-- -- Sorted maps, represented as a pair of sequences
-- -- Use binary search to do lookups and find insertion points
-- -- This relies on the underlying sequence having efficient
-- -- slicing and concatenation
structural type Map k v = Map [k] [v]
-- use Map Map
-- namespace Search where
Search.indexOf : a -> [a] -> Optional Nat
Search.indexOf a s =
ao = Some a
Search.exact (i -> ao `compare` List.at i s) 0 (size s)
Search.lubIndexOf' : a -> Nat -> [a] -> Nat
Search.lubIndexOf' a start s =
ao = Some a
Search.lub (i -> ao `compare` List.at i s) start (size s)
Search.lubIndexOf : a -> [a] -> Nat
Search.lubIndexOf a s = lubIndexOf' a 0 s
Search.lub : (Nat -> Int) -> Nat -> Nat -> Nat
Search.lub hit bot top =
if bot >= top then top
else
mid = (bot + top) / 2
match hit mid with
+0 -> mid
-1 -> lub hit bot mid
+1 -> lub hit (mid + 1) top
Search.exact : (Nat -> Int) -> Nat -> Nat -> Optional Nat
Search.exact hit bot top =
if bot >= top then None
else
mid = (bot + top) / 2
match hit mid with
+0 -> Some mid
-1 -> exact hit bot mid
+1 -> exact hit (mid + 1) top
-- -- > ex = [0,2,4,6,77,192,3838,12000]
-- -- > List.map (e -> indexOf e ex) ex
-- -- > lubIndexOf 193 ex
(|>) : a -> (a -> b) -> b
a |> f = f a
(<|) : (a -> b) -> a -> b
f <| a = f a
id : a -> a
id a = a
-- namespace Map where
Map.empty : Map k v
Map.empty = Map [] []
Map.singleton : k -> v -> Map k v
Map.singleton k v = Map [k] [v]
Map.fromList : [(k,v)] -> Map k v
Map.fromList kvs =
go acc i = match List.at i kvs with
None -> acc
Some (k,v) -> go (Map.insert k v acc) (i + 1)
go empty 0
Map.toList : Map k v -> [(k,v)]
Map.toList m = List.zip (keys m) (values m)
Map.size : Map k v -> Nat
Map.size s = List.size (keys s)
Map.lookup : k -> Map k v -> Optional v
Map.lookup k = cases
Map ks vs -> match Search.indexOf k ks with
None -> None
Some i -> at i vs
Map.contains : k -> Map k v -> Boolean
Map.contains k = cases Map ks _ ->
match Search.indexOf k ks with
None -> false
_ -> true
Map.insert : k -> v -> Map k v -> Map k v
Map.insert k v = cases Map ks vs ->
use Search lubIndexOf
i = lubIndexOf k ks
match at i ks with
Some k' ->
if k == k' then Map ks (List.replace i v vs)
else Map (List.insert i k ks) (List.insert i v vs)
None -> Map (ks `snoc` k) (vs `snoc` v)
Map.map : (v -> v2) -> Map k v -> Map k v2
Map.map f m = Map (keys m) (List.map f (values m))
Map.mapKeys : (k -> k2) -> Map k v -> Map k2 v
Map.mapKeys f m = Map (List.map f (keys m)) (values m)
Map.union : Map k v -> Map k v -> Map k v
Map.union = unionWith (_ v -> v)
Map.unionWith : (v -> v -> v) -> Map k v -> Map k v -> Map k v
Map.unionWith f m1 m2 = match (m1, m2) with (Map k1 v1, Map k2 v2) ->
go i j ko vo = match (at i k1, at j k2) with
(None, _) -> Map (ko ++ drop j k2) (vo ++ drop j v2)
(_, None) -> Map (ko ++ drop i k1) (vo ++ drop i v1)
(Some kx, Some ky) ->
use List slice unsafeAt
use Search lubIndexOf'
if kx == ky then
go (i + 1) (j + 1)
(ko `snoc` kx)
(vo `snoc` f (unsafeAt i v1) (unsafeAt j v2))
else if kx < ky then
i' = lubIndexOf' ky i k1
go i' j (ko ++ slice i i' k1) (vo ++ slice i i' v1)
else
j' = lubIndexOf' kx j k2
go i j' (ko ++ slice j j' k2) (vo ++ slice j j' v2)
go 0 0 [] []
Map.intersect : Map k v -> Map k v -> Map k v
Map.intersect = intersectWith (_ v -> v)
Map.intersectWith : (v -> v -> v2) -> Map k v -> Map k v -> Map k v2
Map.intersectWith f m1 m2 = match (m1, m2) with (Map k1 v1, Map k2 v2) ->
go i j ko vo = match (at i k1, at j k2) with
(None, _) -> Map ko vo
(_, None) -> Map ko vo
(Some kx, Some ky) ->
if kx == ky then
go (i + 1) (j + 1)
(ko `snoc` kx)
(vo `snoc` f (List.unsafeAt i v1) (List.unsafeAt j v2))
else if kx < ky then
i' = Search.lubIndexOf' ky i k1
go i' j ko vo
else
j' = Search.lubIndexOf' kx j k2
go i j' ko vo
go 0 0 [] []
Map.keys : Map k v -> [k]
Map.keys = cases Map ks _ -> ks
Map.values : Map k v -> [v]
Map.values = cases Map _ vs -> vs
Multimap.insert : k -> v -> Map k [v] -> Map k [v]
Multimap.insert k v m = match Map.lookup k m with
None -> Map.insert k [v] m
Some vs -> Map.insert k (vs `snoc` v) m
Multimap.lookup : k -> Map k [v] -> [v]
Multimap.lookup k m = Optional.orDefault [] (Map.lookup k m)
structural type Set a = Set (Map a ())
Set.empty : Set k
Set.empty = Set Map.empty
Set.underlying : Set k -> Map k ()
Set.underlying = cases Set s -> s
Set.toMap : (k -> v) -> Set k -> Map k v
Set.toMap f = cases Set (Map ks vs) -> Map ks (List.map f ks)
Set.fromList : [k] -> Set k
Set.fromList ks = Set (Map.fromList (List.map (k -> (k,())) ks))
Set.toList : Set k -> [k]
Set.toList = cases Set (Map ks _) -> ks
Set.contains : k -> Set k -> Boolean
Set.contains k = cases Set m -> Map.contains k m
Set.insert : k -> Set k -> Set k
Set.insert k = cases Set s -> Set (Map.insert k () s)
Set.union : Set k -> Set k -> Set k
Set.union s1 s2 = Set (Map.union (underlying s1) (underlying s2))
Set.size : Set k -> Nat
Set.size s = Map.size (underlying s)
Set.intersect : Set k -> Set k -> Set k
Set.intersect s1 s2 = Set (Map.intersect (underlying s1) (underlying s2))
structural type Heap k v = Heap Nat k v [Heap k v]
Heap.singleton : k -> v -> Heap k v
Heap.singleton k v = Heap 1 k v []
Heap.size : Heap k v -> Nat
Heap.size = cases Heap n _ _ _ -> n
Heap.union : Heap k v -> Heap k v -> Heap k v
Heap.union h1 h2 = match (h1, h2) with
(Heap n k1 v1 hs1, Heap m k2 v2 hs2) ->
if k1 >= k2 then Heap (n + m) k1 v1 (cons h2 hs1)
else Heap (n + m) k2 v2 (cons h1 hs2)
Heap.pop : Heap k v -> Optional (Heap k v)
Heap.pop h =
go h subs =
use List drop size unsafeAt
if size subs == 0 then h
else if size subs == 1 then h `Heap.union` unsafeAt 0 subs
else union h (unsafeAt 0 subs) `Heap.union` go (unsafeAt 1 subs) (drop 2 subs)
match List.uncons (children h) with
None -> None
Some (s0, subs) -> Some (go s0 subs)
Heap.children : Heap k v -> [Heap k v]
Heap.children = cases Heap _ _ _ cs -> cs
Heap.max : Heap k v -> (k, v)
Heap.max = cases Heap _ k v _ -> (k, v)
Heap.maxKey : Heap k v -> k
Heap.maxKey = cases Heap _ k _ _ -> k
Heap.fromList : [(k,v)] -> Optional (Heap k v)
Heap.fromList kvs =
op a b = match a with
None -> b
Some a -> match b with
None -> Some a
Some b -> Some (Heap.union a b)
single = cases
(k, v) -> Some (Heap.singleton k v)
List.foldb single op None kvs
Heap.fromKeys : [a] -> Optional (Heap a a)
Heap.fromKeys as = fromList (List.map (a -> (a,a)) as)
Heap.sortDescending : [a] -> [a]
Heap.sortDescending as =
step = cases
None -> None
Some h -> Some (max h, pop h)
List.unfold (fromKeys as) step |> List.map Tuple.at1
Heap.sort : [a] -> [a]
Heap.sort as = sortDescending as |> List.reverse
> sort [11,9,8,4,5,6,7,3,2,10,1]
Optional.map : (a -> b) -> Optional a -> Optional b
Optional.map f = cases
None -> None
Some a -> Some (f a)
Optional.orDefault : a -> Optional a -> a
Optional.orDefault a = cases
None -> a
Some a -> a
Optional.orElse : Optional a -> Optional a -> Optional a
Optional.orElse a b = match a with
None -> b
Some _ -> a
Optional.flatMap : (a -> Optional b) -> Optional a -> Optional b
Optional.flatMap f = cases
None -> None
Some a -> f a
Optional.map2 : (a -> b -> c) -> Optional a -> Optional b -> Optional c
Optional.map2 f oa ob = flatMap (a -> map (f a) ob) oa