forked from tensorflow/models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_async_generation.py
640 lines (539 loc) · 24.4 KB
/
data_async_generation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Asynchronously generate TFRecords files for NCF."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import atexit
import contextlib
import datetime
import gc
import multiprocessing
import json
import os
import pickle
import signal
import sys
import tempfile
import time
import timeit
import traceback
import typing
import numpy as np
import tensorflow as tf
from absl import app as absl_app
from absl import flags
from official.datasets import movielens
from official.recommendation import constants as rconst
from official.recommendation import stat_utils
from official.recommendation import popen_helper
from official.utils.logs import mlperf_helper
_log_file = None
def log_msg(msg):
"""Include timestamp info when logging messages to a file."""
if flags.FLAGS.use_tf_logging:
tf.logging.info(msg)
return
if flags.FLAGS.redirect_logs:
timestamp = datetime.datetime.now().strftime("%Y-%m-%dT%H:%M:%S")
print("[{}] {}".format(timestamp, msg), file=_log_file)
else:
print(msg, file=_log_file)
if _log_file:
_log_file.flush()
def get_cycle_folder_name(i):
return "cycle_{}".format(str(i).zfill(5))
def _process_shard(args):
# type: ((str, int, int, int, bool)) -> (np.ndarray, np.ndarray, np.ndarray)
"""Read a shard of training data and return training vectors.
Args:
shard_path: The filepath of the positive instance training shard.
num_items: The cardinality of the item set.
num_neg: The number of negatives to generate per positive example.
seed: Random seed to be used when generating negatives.
is_training: Generate training (True) or eval (False) data.
match_mlperf: Match the MLPerf reference behavior
"""
shard_path, num_items, num_neg, seed, is_training, match_mlperf = args
np.random.seed(seed)
# The choice to store the training shards in files rather than in memory
# is motivated by the fact that multiprocessing serializes arguments,
# transmits them to map workers, and then deserializes them. By storing the
# training shards in files, the serialization work only needs to be done once.
#
# A similar effect could be achieved by simply holding pickled bytes in
# memory, however the processing is not I/O bound and is therefore
# unnecessary.
with tf.gfile.Open(shard_path, "rb") as f:
shard = pickle.load(f)
users = shard[rconst.TRAIN_KEY][movielens.USER_COLUMN]
items = shard[rconst.TRAIN_KEY][movielens.ITEM_COLUMN]
if not is_training:
# For eval, there is one positive which was held out from the training set.
test_positive_dict = dict(zip(
shard[rconst.EVAL_KEY][movielens.USER_COLUMN],
shard[rconst.EVAL_KEY][movielens.ITEM_COLUMN]))
delta = users[1:] - users[:-1]
boundaries = ([0] + (np.argwhere(delta)[:, 0] + 1).tolist() +
[users.shape[0]])
user_blocks = []
item_blocks = []
label_blocks = []
for i in range(len(boundaries) - 1):
assert len(set(users[boundaries[i]:boundaries[i+1]])) == 1
current_user = users[boundaries[i]]
positive_items = items[boundaries[i]:boundaries[i+1]]
positive_set = set(positive_items)
if positive_items.shape[0] != len(positive_set):
raise ValueError("Duplicate entries detected.")
if is_training:
n_pos = len(positive_set)
negatives = stat_utils.sample_with_exclusion(
num_items, positive_set, n_pos * num_neg, replacement=True)
else:
if not match_mlperf:
# The mlperf reference allows the holdout item to appear as a negative.
# Including it in the positive set makes the eval more stringent,
# because an appearance of the test item would be removed by
# deduplication rules. (Effectively resulting in a minute reduction of
# NUM_EVAL_NEGATIVES)
positive_set.add(test_positive_dict[current_user])
negatives = stat_utils.sample_with_exclusion(
num_items, positive_set, num_neg, replacement=match_mlperf)
positive_set = [test_positive_dict[current_user]]
n_pos = len(positive_set)
assert n_pos == 1
user_blocks.append(current_user * np.ones(
(n_pos * (1 + num_neg),), dtype=np.int32))
item_blocks.append(
np.array(list(positive_set) + negatives, dtype=np.uint16))
labels_for_user = np.zeros((n_pos * (1 + num_neg),), dtype=np.int8)
labels_for_user[:n_pos] = 1
label_blocks.append(labels_for_user)
users_out = np.concatenate(user_blocks)
items_out = np.concatenate(item_blocks)
labels_out = np.concatenate(label_blocks)
assert users_out.shape == items_out.shape == labels_out.shape
return users_out, items_out, labels_out
def _construct_record(users, items, labels=None, dupe_mask=None):
"""Convert NumPy arrays into a TFRecords entry."""
feature_dict = {
movielens.USER_COLUMN: tf.train.Feature(
bytes_list=tf.train.BytesList(value=[memoryview(users).tobytes()])),
movielens.ITEM_COLUMN: tf.train.Feature(
bytes_list=tf.train.BytesList(value=[memoryview(items).tobytes()])),
}
if labels is not None:
feature_dict["labels"] = tf.train.Feature(
bytes_list=tf.train.BytesList(value=[memoryview(labels).tobytes()]))
if dupe_mask is not None:
feature_dict[rconst.DUPLICATE_MASK] = tf.train.Feature(
bytes_list=tf.train.BytesList(value=[memoryview(dupe_mask).tobytes()]))
return tf.train.Example(
features=tf.train.Features(feature=feature_dict)).SerializeToString()
def sigint_handler(signal, frame):
log_msg("Shutting down worker.")
def init_worker():
signal.signal(signal.SIGINT, sigint_handler)
def _construct_records(
is_training, # type: bool
train_cycle, # type: typing.Optional[int]
num_workers, # type: int
cache_paths, # type: rconst.Paths
num_readers, # type: int
num_neg, # type: int
num_positives, # type: int
num_items, # type: int
epochs_per_cycle, # type: int
batch_size, # type: int
training_shards, # type: typing.List[str]
deterministic=False, # type: bool
match_mlperf=False # type: bool
):
"""Generate false negatives and write TFRecords files.
Args:
is_training: Are training records (True) or eval records (False) created.
train_cycle: Integer of which cycle the generated data is for.
num_workers: Number of multiprocessing workers to use for negative
generation.
cache_paths: Paths object with information of where to write files.
num_readers: The number of reader datasets in the input_fn. This number is
approximate; fewer shards will be created if not all shards are assigned
batches. This can occur due to discretization in the assignment process.
num_neg: The number of false negatives per positive example.
num_positives: The number of positive examples. This value is used
to pre-allocate arrays while the imap is still running. (NumPy does not
allow dynamic arrays.)
num_items: The cardinality of the item set.
epochs_per_cycle: The number of epochs worth of data to construct.
batch_size: The expected batch size used during training. This is used
to properly batch data when writing TFRecords.
training_shards: The picked positive examples from which to generate
negatives.
"""
st = timeit.default_timer()
if is_training:
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.INPUT_STEP_TRAIN_NEG_GEN)
mlperf_helper.ncf_print(
key=mlperf_helper.TAGS.INPUT_HP_NUM_NEG, value=num_neg)
# set inside _process_shard()
mlperf_helper.ncf_print(
key=mlperf_helper.TAGS.INPUT_HP_SAMPLE_TRAIN_REPLACEMENT, value=True)
else:
# Later logic assumes that all items for a given user are in the same batch.
assert not batch_size % (rconst.NUM_EVAL_NEGATIVES + 1)
assert num_neg == rconst.NUM_EVAL_NEGATIVES
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.INPUT_STEP_EVAL_NEG_GEN)
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_HP_NUM_USERS,
value=num_positives)
assert epochs_per_cycle == 1 or is_training
num_workers = min([num_workers, len(training_shards) * epochs_per_cycle])
num_pts = num_positives * (1 + num_neg)
# Equivalent to `int(ceil(num_pts / batch_size)) * batch_size`, but without
# precision concerns
num_pts_with_padding = (num_pts + batch_size - 1) // batch_size * batch_size
num_padding = num_pts_with_padding - num_pts
# We choose a different random seed for each process, so that the processes
# will not all choose the same random numbers.
process_seeds = [stat_utils.random_int32()
for _ in training_shards * epochs_per_cycle]
map_args = [
(shard, num_items, num_neg, process_seeds[i], is_training, match_mlperf)
for i, shard in enumerate(training_shards * epochs_per_cycle)]
with popen_helper.get_pool(num_workers, init_worker) as pool:
map_fn = pool.imap if deterministic else pool.imap_unordered # pylint: disable=no-member
data_generator = map_fn(_process_shard, map_args)
data = [
np.zeros(shape=(num_pts_with_padding,), dtype=np.int32) - 1,
np.zeros(shape=(num_pts_with_padding,), dtype=np.uint16),
np.zeros(shape=(num_pts_with_padding,), dtype=np.int8),
]
# Training data is shuffled. Evaluation data MUST not be shuffled.
# Downstream processing depends on the fact that evaluation data for a given
# user is grouped within a batch.
if is_training:
index_destinations = np.random.permutation(num_pts)
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.INPUT_ORDER)
else:
index_destinations = np.arange(num_pts)
start_ind = 0
for data_segment in data_generator:
n_in_segment = data_segment[0].shape[0]
dest = index_destinations[start_ind:start_ind + n_in_segment]
start_ind += n_in_segment
for i in range(3):
data[i][dest] = data_segment[i]
assert np.sum(data[0] == -1) == num_padding
if is_training:
if num_padding:
# In order to have a full batch, randomly include points from earlier in
# the batch.
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.INPUT_ORDER)
pad_sample_indices = np.random.randint(
low=0, high=num_pts, size=(num_padding,))
dest = np.arange(start=start_ind, stop=start_ind + num_padding)
start_ind += num_padding
for i in range(3):
data[i][dest] = data[i][pad_sample_indices]
else:
# For Evaluation, padding is all zeros. The evaluation input_fn knows how
# to interpret and discard the zero padded entries.
data[0][num_pts:] = 0
# Check that no points were overlooked.
assert not np.sum(data[0] == -1)
if is_training:
# The number of points is slightly larger than num_pts due to padding.
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.INPUT_SIZE,
value=int(data[0].shape[0]))
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.INPUT_BATCH_SIZE,
value=batch_size)
else:
# num_pts is logged instead of int(data[0].shape[0]), because the size
# of the data vector includes zero pads which are ignored.
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.EVAL_SIZE, value=num_pts)
batches_per_file = np.ceil(num_pts_with_padding / batch_size / num_readers)
current_file_id = -1
current_batch_id = -1
batches_by_file = [[] for _ in range(num_readers)]
while True:
current_batch_id += 1
if (current_batch_id % batches_per_file) == 0:
current_file_id += 1
start_ind = current_batch_id * batch_size
end_ind = start_ind + batch_size
if end_ind > num_pts_with_padding:
if start_ind != num_pts_with_padding:
raise ValueError("Batch padding does not line up")
break
batches_by_file[current_file_id].append(current_batch_id)
# Drop shards which were not assigned batches
batches_by_file = [i for i in batches_by_file if i]
num_readers = len(batches_by_file)
if is_training:
# Empirically it is observed that placing the batch with repeated values at
# the start rather than the end improves convergence.
mlperf_helper.ncf_print(key=mlperf_helper.TAGS.INPUT_ORDER)
batches_by_file[0][0], batches_by_file[-1][-1] = \
batches_by_file[-1][-1], batches_by_file[0][0]
if is_training:
template = rconst.TRAIN_RECORD_TEMPLATE
record_dir = os.path.join(cache_paths.train_epoch_dir,
get_cycle_folder_name(train_cycle))
tf.gfile.MakeDirs(record_dir)
else:
template = rconst.EVAL_RECORD_TEMPLATE
record_dir = cache_paths.eval_data_subdir
batch_count = 0
for i in range(num_readers):
fpath = os.path.join(record_dir, template.format(i))
log_msg("Writing {}".format(fpath))
with tf.python_io.TFRecordWriter(fpath) as writer:
for j in batches_by_file[i]:
start_ind = j * batch_size
end_ind = start_ind + batch_size
record_kwargs = dict(
users=data[0][start_ind:end_ind],
items=data[1][start_ind:end_ind],
)
if is_training:
record_kwargs["labels"] = data[2][start_ind:end_ind]
else:
record_kwargs["dupe_mask"] = stat_utils.mask_duplicates(
record_kwargs["items"].reshape(-1, num_neg + 1),
axis=1).flatten().astype(np.int8)
batch_bytes = _construct_record(**record_kwargs)
writer.write(batch_bytes)
batch_count += 1
# We write to a temp file then atomically rename it to the final file, because
# writing directly to the final file can cause the main process to read a
# partially written JSON file.
ready_file_temp = os.path.join(record_dir, rconst.READY_FILE_TEMP)
with tf.gfile.Open(ready_file_temp, "w") as f:
json.dump({
"batch_size": batch_size,
"batch_count": batch_count,
}, f)
ready_file = os.path.join(record_dir, rconst.READY_FILE)
tf.gfile.Rename(ready_file_temp, ready_file)
if is_training:
log_msg("Cycle {} complete. Total time: {:.1f} seconds"
.format(train_cycle, timeit.default_timer() - st))
else:
log_msg("Eval construction complete. Total time: {:.1f} seconds"
.format(timeit.default_timer() - st))
def _generation_loop(num_workers, # type: int
cache_paths, # type: rconst.Paths
num_readers, # type: int
num_neg, # type: int
num_train_positives, # type: int
num_items, # type: int
num_users, # type: int
epochs_per_cycle, # type: int
num_cycles, # type: int
train_batch_size, # type: int
eval_batch_size, # type: int
deterministic, # type: bool
match_mlperf # type: bool
):
# type: (...) -> None
"""Primary run loop for data file generation."""
log_msg("Entering generation loop.")
tf.gfile.MakeDirs(cache_paths.train_epoch_dir)
tf.gfile.MakeDirs(cache_paths.eval_data_subdir)
training_shards = [os.path.join(cache_paths.train_shard_subdir, i) for i in
tf.gfile.ListDirectory(cache_paths.train_shard_subdir)]
shared_kwargs = dict(
num_workers=multiprocessing.cpu_count(), cache_paths=cache_paths,
num_readers=num_readers, num_items=num_items,
training_shards=training_shards, deterministic=deterministic,
match_mlperf=match_mlperf
)
# Training blocks on the creation of the first epoch, so the num_workers
# limit is not respected for this invocation
train_cycle = 0
_construct_records(
is_training=True, train_cycle=train_cycle, num_neg=num_neg,
num_positives=num_train_positives, epochs_per_cycle=epochs_per_cycle,
batch_size=train_batch_size, **shared_kwargs)
# Construct evaluation set.
shared_kwargs["num_workers"] = num_workers
_construct_records(
is_training=False, train_cycle=None, num_neg=rconst.NUM_EVAL_NEGATIVES,
num_positives=num_users, epochs_per_cycle=1, batch_size=eval_batch_size,
**shared_kwargs)
wait_count = 0
start_time = time.time()
while train_cycle < num_cycles:
ready_epochs = tf.gfile.ListDirectory(cache_paths.train_epoch_dir)
if len(ready_epochs) >= rconst.CYCLES_TO_BUFFER:
wait_count += 1
sleep_time = max([0, wait_count * 5 - (time.time() - start_time)])
time.sleep(sleep_time)
if (wait_count % 10) == 0:
log_msg("Waited {} times for data to be consumed."
.format(wait_count))
if time.time() - start_time > rconst.TIMEOUT_SECONDS:
log_msg("Waited more than {} seconds. Concluding that this "
"process is orphaned and exiting gracefully."
.format(rconst.TIMEOUT_SECONDS))
sys.exit()
continue
train_cycle += 1
_construct_records(
is_training=True, train_cycle=train_cycle, num_neg=num_neg,
num_positives=num_train_positives, epochs_per_cycle=epochs_per_cycle,
batch_size=train_batch_size, **shared_kwargs)
wait_count = 0
start_time = time.time()
gc.collect()
def wait_for_path(fpath):
start_time = time.time()
while not tf.gfile.Exists(fpath):
if time.time() - start_time > rconst.TIMEOUT_SECONDS:
log_msg("Waited more than {} seconds. Concluding that this "
"process is orphaned and exiting gracefully."
.format(rconst.TIMEOUT_SECONDS))
sys.exit()
time.sleep(1)
def _parse_flagfile(flagfile):
"""Fill flags with flagfile written by the main process."""
tf.logging.info("Waiting for flagfile to appear at {}..."
.format(flagfile))
wait_for_path(flagfile)
tf.logging.info("flagfile found.")
# `flags` module opens `flagfile` with `open`, which does not work on
# google cloud storage etc.
_, flagfile_temp = tempfile.mkstemp()
tf.gfile.Copy(flagfile, flagfile_temp, overwrite=True)
flags.FLAGS([__file__, "--flagfile", flagfile_temp])
tf.gfile.Remove(flagfile_temp)
def write_alive_file(cache_paths):
"""Write file to signal that generation process started correctly."""
wait_for_path(cache_paths.cache_root)
log_msg("Signaling that I am alive.")
with tf.gfile.Open(cache_paths.subproc_alive, "w") as f:
f.write("Generation subproc has started.")
@atexit.register
def remove_alive_file():
try:
tf.gfile.Remove(cache_paths.subproc_alive)
except tf.errors.NotFoundError:
return # Main thread has already deleted the entire cache dir.
def main(_):
# Note: The async process must execute the following two steps in the
# following order BEFORE doing anything else:
# 1) Write the alive file
# 2) Wait for the flagfile to be written.
global _log_file
cache_paths = rconst.Paths(
data_dir=flags.FLAGS.data_dir, cache_id=flags.FLAGS.cache_id)
write_alive_file(cache_paths=cache_paths)
flagfile = os.path.join(cache_paths.cache_root, rconst.FLAGFILE)
_parse_flagfile(flagfile)
redirect_logs = flags.FLAGS.redirect_logs
log_file_name = "data_gen_proc_{}.log".format(cache_paths.cache_id)
log_path = os.path.join(cache_paths.data_dir, log_file_name)
if log_path.startswith("gs://") and redirect_logs:
fallback_log_file = os.path.join(tempfile.gettempdir(), log_file_name)
print("Unable to log to {}. Falling back to {}"
.format(log_path, fallback_log_file))
log_path = fallback_log_file
# This server is generally run in a subprocess.
if redirect_logs:
print("Redirecting output of data_async_generation.py process to {}"
.format(log_path))
_log_file = open(log_path, "wt") # Note: not tf.gfile.Open().
try:
log_msg("sys.argv: {}".format(" ".join(sys.argv)))
if flags.FLAGS.seed is not None:
np.random.seed(flags.FLAGS.seed)
with mlperf_helper.LOGGER(
enable=flags.FLAGS.output_ml_perf_compliance_logging):
mlperf_helper.set_ncf_root(os.path.split(os.path.abspath(__file__))[0])
_generation_loop(
num_workers=flags.FLAGS.num_workers,
cache_paths=cache_paths,
num_readers=flags.FLAGS.num_readers,
num_neg=flags.FLAGS.num_neg,
num_train_positives=flags.FLAGS.num_train_positives,
num_items=flags.FLAGS.num_items,
num_users=flags.FLAGS.num_users,
epochs_per_cycle=flags.FLAGS.epochs_per_cycle,
num_cycles=flags.FLAGS.num_cycles,
train_batch_size=flags.FLAGS.train_batch_size,
eval_batch_size=flags.FLAGS.eval_batch_size,
deterministic=flags.FLAGS.seed is not None,
match_mlperf=flags.FLAGS.ml_perf,
)
except KeyboardInterrupt:
log_msg("KeyboardInterrupt registered.")
except:
traceback.print_exc(file=_log_file)
raise
finally:
log_msg("Shutting down generation subprocess.")
sys.stdout.flush()
sys.stderr.flush()
if redirect_logs:
_log_file.close()
def define_flags():
"""Construct flags for the server."""
flags.DEFINE_integer(name="num_workers", default=multiprocessing.cpu_count(),
help="Size of the negative generation worker pool.")
flags.DEFINE_string(name="data_dir", default=None,
help="The data root. (used to construct cache paths.)")
flags.DEFINE_string(name="cache_id", default=None,
help="The cache_id generated in the main process.")
flags.DEFINE_integer(name="num_readers", default=4,
help="Number of reader datasets in training. This sets"
"how the epoch files are sharded.")
flags.DEFINE_integer(name="num_neg", default=None,
help="The Number of negative instances to pair with a "
"positive instance.")
flags.DEFINE_integer(name="num_train_positives", default=None,
help="The number of positive training examples.")
flags.DEFINE_integer(name="num_items", default=None,
help="Number of items from which to select negatives.")
flags.DEFINE_integer(name="num_users", default=None,
help="The number of unique users. Used for evaluation.")
flags.DEFINE_integer(name="epochs_per_cycle", default=1,
help="The number of epochs of training data to produce"
"at a time.")
flags.DEFINE_integer(name="num_cycles", default=None,
help="The number of cycles to produce training data "
"for.")
flags.DEFINE_integer(name="train_batch_size", default=None,
help="The batch size with which training TFRecords will "
"be chunked.")
flags.DEFINE_integer(name="eval_batch_size", default=None,
help="The batch size with which evaluation TFRecords "
"will be chunked.")
flags.DEFINE_boolean(name="redirect_logs", default=False,
help="Catch logs and write them to a file. "
"(Useful if this is run as a subprocess)")
flags.DEFINE_boolean(name="use_tf_logging", default=False,
help="Use tf.logging instead of log file.")
flags.DEFINE_integer(name="seed", default=None,
help="NumPy random seed to set at startup. If not "
"specified, a seed will not be set.")
flags.DEFINE_boolean(name="ml_perf", default=None,
help="Match MLPerf. See ncf_main.py for details.")
flags.DEFINE_bool(name="output_ml_perf_compliance_logging", default=None,
help="Output the MLPerf compliance logging. See "
"ncf_main.py for details.")
flags.mark_flags_as_required(["data_dir", "cache_id"])
if __name__ == "__main__":
define_flags()
absl_app.run(main)