Skip to content

Files

Failed to load latest commit information.

Latest commit

 Cannot retrieve latest commit at this time.

History

History

tiny_yolov2

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 

Tiny YOLOv2

Download: https://www.cntk.ai/OnnxModels/tiny_yolov2.tar.gz
Model size: 61 MB

Description

This model is a real-time neural network for object detection that detects 20 different classes. It is made up of 9 convolutional layers and 6 max-pooling layers and is a smaller version of the more complex full YOLOv2 network.

Paper

"YOLO9000: Better, Faster, Stronger" arXiv:1612.08242

Dataset

The Tiny YOLO model was trained on the Pascal VOC dataset.

Source

The model was converted from a Core ML version of Tiny YOLO using ONNXMLTools. The source code can be found here. The Core ML model in turn was converted from the original network implemented in Darknet (via intermediate conversion through Keras).

Model input and output

Input

Input image of the shape (3x416x416)

Output

Output is a (1x125x13x13) array

Pre-processing steps

Resize the input image to a (3x416x416) array of type float32.

Post-processing steps

The output is a (125x13x13) tensor where 13x13 is the number of grid cells that the image gets divided into. Each grid cell corresponds to 125 channels, made up of the 5 bounding boxes predicted by the grid cell and the 25 data elements that describe each bounding box (5x25=125). For more information on how to derive the final bounding boxes and their corresponding confidence scores, refer to this post.

Sample test data

Sets of sample input and output files are provided in .npz format (test_data_*.npz). The input is a (3x416x416) numpy array of a test image from Pascal VOC, while the output is a numpy array of shape (1x125x13x13).

License

MIT