Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
  • Loading branch information
mx-iao authored Aug 3, 2018
1 parent 1095536 commit 2197a6f
Showing 1 changed file with 10 additions and 11 deletions.
21 changes: 10 additions & 11 deletions tiny_yolov2/README.md
Original file line number Diff line number Diff line change
@@ -1,34 +1,33 @@
# Tiny YOLOv2

Download:
- release 1.0: https://www.cntk.ai/OnnxModels/tiny_yolov2/opset_1/tiny_yolov2.tar.gz
- release 1.2: https://www.cntk.ai/OnnxModels/tiny_yolov2/opset_7/tiny_yolov2.tar.gz

Model size: 61 MB

## Description
This model is a real-time neural network for object detection that detects 20 different classes. It is made up of 9 convolutional layers and 6 max-pooling layers and is a smaller version of the more complex full [YOLOv2](https://pjreddie.com/darknet/yolov2/) network.

## Model
|Model|Checksum|Download (with sample test data)| ONNX version |Opset version|
|-----|:-------|:-------------------------------|:-------------|:------------|
|Tiny YOLOv2|[MD5](https://www.cntk.ai/OnnxModels/tiny_yolov2/opset_1/tiny_yolov2-md5.txt)|[60.8 MB](https://www.cntk.ai/OnnxModels/tiny_yolov2/opset_1/tiny_yolov2.tar.gz) |1.0 |1 |
| |[MD5](https://www.cntk.ai/OnnxModels/tiny_yolov2/opset_7/tiny_yolov2-md5.txt)|[60.8 MB](https://www.cntk.ai/OnnxModels/tiny_yolov2/opset_7/tiny_yolov2.tar.gz) |1.2 |7 |

### Paper
"YOLO9000: Better, Faster, Stronger" [arXiv:1612.08242](https://arxiv.org/pdf/1612.08242.pdf)

### Dataset
The Tiny YOLO model was trained on the [Pascal VOC](http://host.robots.ox.ac.uk/pascal/VOC/) dataset.

## Source
### Source
The model was converted from a Core ML version of Tiny YOLO using [ONNXMLTools](https://github.com/onnx/onnxmltools). The source code can be found [here](https://github.com/hollance/YOLO-CoreML-MPSNNGraph). The Core ML model in turn was converted from the [original network](https://pjreddie.com/darknet/yolov2/) implemented in Darknet (via intermediate conversion through Keras).

## Model input and output
## Inference
### Input
shape `(1x3x416x416)`
### Preprocessing
### Output
shape `(1x125x13x13)`
### Pre-processing steps
### Post-processing steps
### Postprocessing
The output is a `(125x13x13)` tensor where 13x13 is the number of grid cells that the image gets divided into. Each grid cell corresponds to 125 channels, made up of the 5 bounding boxes predicted by the grid cell and the 25 data elements that describe each bounding box (`5x25=125`). For more information on how to derive the final bounding boxes and their corresponding confidence scores, refer to this [post](http://machinethink.net/blog/object-detection-with-yolo/).
### Sample test data
Sets of sample input and output files are provided in
* the .npz format (`test_data_*.npz`). The input is a `(1x3x416x416)` numpy array of a test image from Pascal VOC, while the output is a numpy array of shape `(1x125x13x13)`.
* serialized protobuf TensorProtos (`.pb`), which are stored in the folders `test_data_set_*/`.

## License
Expand Down

0 comments on commit 2197a6f

Please sign in to comment.