forked from farkguidao/2D-Ptr
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
0 parents
commit 6b7c220
Showing
41 changed files
with
2,920 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,87 @@ | ||
# 2D-Ptr | ||
Source code for paper "2D-Ptr: 2D Array Pointer Network for Solving the Heterogeneous Capacitated Vehicle Routing Problem" | ||
|
||
## Dependencies | ||
|
||
- Python>=3.8 | ||
- NumPy | ||
- SciPy | ||
- [PyTorch](http://pytorch.org/)>=1.12.1 | ||
- tqdm | ||
- [tensorboard_logger](https://github.com/TeamHG-Memex/tensorboard_logger) | ||
|
||
## Quick start | ||
|
||
The implementation of the 2D-Ptr model is mainly in the file `./nets/attention_model.py` | ||
|
||
For testing HCVRP instances with 60 customers and 5 vehicles (V5-U60) and using pre-trained model: | ||
|
||
```shell | ||
# greedy | ||
python eval.py data/hcvrp/hcvrp_v5_60_seed24610.pkl --model outputs/hcvrp_v5_60 --obj min-max --decode_strategy greedy --eval_batch_size 1 | ||
# sample1280 | ||
python eval.py data/hcvrp/hcvrp_v5_60_seed24610.pkl --model outputs/hcvrp_v5_60 --obj min-max --decode_strategy sample --width 1280 --eval_batch_size 1 | ||
# sample12800 | ||
python eval.py data/hcvrp/hcvrp_v5_60_seed24610.pkl --model outputs/hcvrp_v5_60 --obj min-max --decode_strategy sample --width 12800 --eval_batch_size 1 | ||
``` | ||
|
||
Since AAMAS limits the submission file size within 25Mb, we can only provide the pre-trained model on V5-U60 to avoid exceeding the limit. | ||
|
||
## Usage | ||
|
||
### Generating data | ||
|
||
We have provided all the well-generated test datasets in `./data`, and you can also generate each test set by: | ||
|
||
```shell | ||
python generate_data.py --dataset_size 1280 --veh_num 3 --graph_size 40 | ||
``` | ||
|
||
- The `--graph_size` and `--veh_num` represent the number of customers , vehicles and generated instances, respectively. | ||
|
||
- The default random seed is 24610, and you can change it in `./generate_data.py`. | ||
- The test set will be stored in `./data/hcvrp/` | ||
|
||
### Training | ||
|
||
For training HCVRP instances with 40 customers and 3 vehicles (V3-U40): | ||
|
||
```shell | ||
python run.py --graph_size 40 --veh_num 3 --baseline rollout --run_name hcvrp_v3_40_rollout --obj min-max | ||
``` | ||
|
||
- `--run_name` will be automatically appended with a timestamp, as the unique subpath for logs and checkpoints. | ||
- The log based on Tensorboard will be stored in `./log/`, and the checkpoint (or the well-trained model) will be stored in `./outputs/` | ||
- `--obj` represents the objective function, supporting `min-max` and `min-sum` | ||
|
||
By default, training will happen on all available GPUs. Change the code in `./run.py` to only use specific GPUs: | ||
|
||
```python | ||
if __name__ == "__main__": | ||
warnings.filterwarnings('ignore') | ||
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" | ||
run(get_options()) | ||
``` | ||
|
||
### Evaluation | ||
|
||
you can test a well-trained model on HCVRP instances with any problem size: | ||
|
||
```shell | ||
# greedy | ||
python eval.py data/hcvrp/hcvrp_v3_40_seed24610.pkl --model outputs/hcvrp_v3_40 --obj min-max --decode_strategy greedy --eval_batch_size 1 | ||
# sample1280 | ||
python eval.py data/hcvrp/hcvrp_v3_40_seed24610.pkl --model outputs/hcvrp_v3_40 --obj min-max --decode_strategy sample --width 1280 --eval_batch_size 1 | ||
# sample12800 | ||
python eval.py data/hcvrp/hcvrp_v3_40_seed24610.pkl --model outputs/hcvrp_v3_40 --obj min-max --decode_strategy sample --width 12800 --eval_batch_size 1 | ||
``` | ||
|
||
- The `--model` represents the directory where the used model is located. | ||
- The `$filename$.pkl` represents the test set. | ||
- The `--width` represents sampling number, which is only available when `--decode_strategy` is `sample`. | ||
- The `--eval_batch_size` is set to 1 for serial evaluation. | ||
|
||
|
||
|
||
|
||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
# used after model is completely trained, and test for results | ||
|
||
import math | ||
import torch | ||
import os | ||
import argparse | ||
import numpy as np | ||
import itertools | ||
from tqdm import tqdm | ||
from utils import load_model, move_to | ||
from utils.data_utils import save_dataset | ||
from torch.utils.data import DataLoader | ||
import time | ||
from datetime import timedelta | ||
from utils.functions import parse_softmax_temperature | ||
import warnings | ||
|
||
mp = torch.multiprocessing.get_context('spawn') | ||
|
||
|
||
def get_best(sequences, cost, veh_lists, ids=None, batch_size=None): | ||
""" | ||
Ids contains [0, 0, 0, 1, 1, 2, ..., n, n, n] if 3 solutions found for 0th instance, 2 for 1st, etc | ||
:param sequences: | ||
:param lengths: | ||
:param ids: | ||
:return: list with n sequences and list with n lengths of solutions | ||
""" | ||
if ids is None: | ||
idx = cost.argmin() | ||
return sequences[idx:idx + 1, ...], cost[idx:idx + 1, ...], veh_lists[idx:idx + 1, ...] | ||
|
||
splits = np.hstack([0, np.where(ids[:-1] != ids[1:])[0] + 1]) | ||
mincosts = np.minimum.reduceat(cost, splits) | ||
|
||
group_lengths = np.diff(np.hstack([splits, len(ids)])) | ||
all_argmin = np.flatnonzero(np.repeat(mincosts, group_lengths) == cost) | ||
result = np.full(len(group_lengths) if batch_size is None else batch_size, -1, dtype=int) | ||
|
||
result[ids[all_argmin[::-1]]] = all_argmin[::-1] | ||
|
||
return [sequences[i] if i >= 0 else None for i in result], [cost[i] if i >= 0 else math.inf for i in result], [ | ||
veh_lists[i] if i >= 0 else None for i in result] | ||
|
||
|
||
def eval_dataset_mp(args): | ||
(dataset_path, width, softmax_temp, opts, i, num_processes) = args | ||
|
||
model, _ = load_model(opts.model, opts.obj) | ||
val_size = opts.val_size // num_processes | ||
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=val_size, offset=opts.offset + val_size * i) | ||
device = torch.device("cuda:{}".format(i)) | ||
|
||
return _eval_dataset(model, dataset, width, softmax_temp, opts, device) | ||
|
||
|
||
def eval_dataset(dataset_path, width, softmax_temp, opts): | ||
# Even with multiprocessing, we load the model here since it contains the name where to write results | ||
model, _ = load_model(opts.model, opts.obj) | ||
use_cuda = torch.cuda.is_available() and not opts.no_cuda | ||
if opts.multiprocessing: | ||
assert use_cuda, "Can only do multiprocessing with cuda" | ||
num_processes = torch.cuda.device_count() | ||
assert opts.val_size % num_processes == 0 | ||
|
||
with mp.Pool(num_processes) as pool: | ||
results = list(itertools.chain.from_iterable(pool.map( | ||
eval_dataset_mp, | ||
[(dataset_path, width, softmax_temp, opts, i, num_processes) for i in range(num_processes)] | ||
))) | ||
|
||
else: | ||
device = torch.device("cuda:0" if use_cuda else "cpu") | ||
dataset = model.problem.make_dataset(filename=dataset_path, num_samples=opts.val_size, offset=opts.offset) | ||
results = _eval_dataset(model, dataset, width, softmax_temp, opts, device) | ||
|
||
# This is parallelism, even if we use multiprocessing (we report as if we did not use multiprocessing, e.g. 1 GPU) | ||
parallelism = opts.eval_batch_size | ||
|
||
costs, tours, veh_lists, durations = zip(*results) # Not really costs since they should be negative | ||
|
||
print("Average cost: {} +- {}".format(np.mean(costs), 2 * np.std(costs) / np.sqrt(len(costs)))) | ||
print("Average serial duration: {} +- {}".format( | ||
np.mean(durations), 2 * np.std(durations) / np.sqrt(len(durations)))) | ||
print("Average parallel duration: {}".format(np.mean(durations) / parallelism)) | ||
print("Calculated total duration: {}".format(timedelta(seconds=int(np.sum(durations) / parallelism)))) | ||
# print('tour is', costs[0], len(tours), len(tours[0]), tours[0]) | ||
# print('veh', veh_lists[1]) | ||
# print('tour is', costs[1], len(tours), len(tours[1]), tours[1]) | ||
|
||
dataset_basename, ext = os.path.splitext(os.path.split(dataset_path)[-1]) | ||
model_name = "_".join(os.path.normpath(os.path.splitext(opts.model)[0]).split(os.sep)[-2:]) | ||
if opts.o is None: | ||
results_dir = os.path.join(opts.results_dir, model.problem.NAME, dataset_basename) | ||
os.makedirs(results_dir, exist_ok=True) | ||
|
||
out_file = os.path.join(results_dir, "{}-{}-{}{}-t{}-{}-{}{}".format( | ||
dataset_basename, model_name, | ||
opts.decode_strategy, | ||
width if opts.decode_strategy != 'greedy' else '', | ||
softmax_temp, opts.offset, opts.offset + len(costs), ext | ||
)) | ||
else: | ||
out_file = opts.o | ||
|
||
assert opts.f or not os.path.isfile( | ||
out_file), "File already exists! Try running with -f option to overwrite." | ||
|
||
save_dataset((results, parallelism), out_file) | ||
|
||
return costs, tours, durations | ||
|
||
|
||
def _eval_dataset(model, dataset, width, softmax_temp, opts, device): | ||
# print('data', dataset[0]) | ||
model.to(device) | ||
model.eval() | ||
|
||
model.set_decode_type( | ||
"greedy" if opts.decode_strategy in ('bs', 'greedy') else "sampling", | ||
temp=softmax_temp) | ||
|
||
dataloader = DataLoader(dataset, batch_size=opts.eval_batch_size) | ||
|
||
results = [] | ||
for batch in tqdm(dataloader, disable=opts.no_progress_bar): | ||
batch = move_to(batch, device) | ||
start = time.time() | ||
with torch.no_grad(): | ||
if opts.decode_strategy in ('sample', 'greedy'): | ||
if opts.decode_strategy == 'greedy': | ||
assert width == 0, "Do not set width when using greedy" | ||
assert opts.eval_batch_size <= opts.max_calc_batch_size, \ | ||
"eval_batch_size should be smaller than calc batch size" | ||
batch_rep = 1 | ||
iter_rep = 1 | ||
elif width * opts.eval_batch_size > opts.max_calc_batch_size: | ||
assert opts.eval_batch_size == 1 | ||
assert width % opts.max_calc_batch_size == 0 | ||
batch_rep = opts.max_calc_batch_size | ||
iter_rep = width // opts.max_calc_batch_size | ||
else: | ||
batch_rep = width | ||
iter_rep = 1 | ||
assert batch_rep > 0 | ||
# This returns (batch_size, iter_rep shape) | ||
sequences, costs, veh_lists = model.sample_many(batch, batch_rep=batch_rep, iter_rep=iter_rep) | ||
print('cost', costs) | ||
batch_size = len(costs) | ||
ids = torch.arange(batch_size, dtype=torch.int64, device=costs.device) | ||
else: | ||
assert opts.decode_strategy == 'bs' | ||
|
||
cum_log_p, sequences, costs, ids, batch_size = model.beam_search( | ||
batch, beam_size=width, | ||
compress_mask=opts.compress_mask, | ||
max_calc_batch_size=opts.max_calc_batch_size | ||
) | ||
|
||
if sequences is None: | ||
sequences = [None] * batch_size | ||
costs = [math.inf] * batch_size | ||
veh_lists = [None] * batch_size | ||
else: | ||
sequences, costs, veh_lists = get_best( | ||
sequences.cpu().numpy(), costs.cpu().numpy(), veh_lists.cpu().numpy(), | ||
ids.cpu().numpy() if ids is not None else None, | ||
batch_size | ||
) | ||
|
||
duration = time.time() - start | ||
for seq, cost, veh_list in zip(sequences, costs, veh_lists): | ||
if model.problem.NAME in ("hcvrp"): | ||
seq = seq.tolist() # No need to trim as all are same length | ||
else: | ||
assert False, "Unkown problem: {}".format(model.problem.NAME) | ||
# Note VRP only | ||
results.append((cost, seq, veh_list, duration)) | ||
|
||
return results | ||
|
||
|
||
if __name__ == "__main__": | ||
warnings.filterwarnings('ignore') | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("datasets", nargs='+', help="Filename of the dataset(s) to evaluate") | ||
parser.add_argument("-f", action='store_true', help="Set true to overwrite") | ||
parser.add_argument("-o", default=None, help="Name of the results file to write") | ||
parser.add_argument('--val_size', type=int, default=10000, | ||
help='Number of instances used for reporting validation performance') | ||
parser.add_argument('--offset', type=int, default=0, | ||
help='Offset where to start in dataset (default 0)') | ||
parser.add_argument('--eval_batch_size', type=int, default=1024, | ||
help="Batch size to use during (baseline) evaluation") | ||
# parser.add_argument('--decode_type', type=str, default='greedy', | ||
# help='Decode type, greedy or sampling') | ||
parser.add_argument('--width', type=int, nargs='+', | ||
help='Sizes of beam to use for beam search (or number of samples for sampling), ' | ||
'0 to disable (default), -1 for infinite') | ||
parser.add_argument('--decode_strategy', type=str, | ||
help='Beam search (bs), Sampling (sample) or Greedy (greedy)') | ||
parser.add_argument('--softmax_temperature', type=parse_softmax_temperature, default=1, | ||
help="Softmax temperature (sampling or bs)") | ||
parser.add_argument('--model', type=str) | ||
parser.add_argument('--no_cuda', action='store_true', help='Disable CUDA') | ||
parser.add_argument('--no_progress_bar', action='store_true', help='Disable progress bar') | ||
parser.add_argument('--compress_mask', action='store_true', help='Compress mask into long') | ||
parser.add_argument('--max_calc_batch_size', type=int, default=10000000, help='Size for subbatches') | ||
parser.add_argument('--results_dir', default='results', help="Name of results directory") | ||
parser.add_argument('--obj', default=['min-max', 'min-sum']) | ||
parser.add_argument('--multiprocessing', action='store_true', | ||
help='Use multiprocessing to parallelize over multiple GPUs') | ||
|
||
os.environ["CUDA_VISIBLE_DEVICES"] = "0" | ||
opts = parser.parse_args() | ||
|
||
assert opts.o is None or (len(opts.datasets) == 1 and len(opts.width) <= 1), \ | ||
"Cannot specify result filename with more than one dataset or more than one width" | ||
|
||
widths = opts.width if opts.width is not None else [0] | ||
|
||
for width in widths: | ||
for dataset_path in opts.datasets: | ||
eval_dataset(dataset_path, width, opts.softmax_temperature, opts) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import os | ||
import numpy as np | ||
from utils.data_utils import check_extension, save_dataset | ||
import torch | ||
import pickle | ||
import argparse | ||
|
||
def generate_hcvrp_data(seed,dataset_size, hcvrp_size, veh_num): | ||
rnd = np.random.RandomState(seed) | ||
|
||
loc = rnd.uniform(0, 1, size=(dataset_size, hcvrp_size + 1, 2)) | ||
depot = loc[:, -1] | ||
cust = loc[:, :-1] | ||
d = rnd.randint(1, 10, [dataset_size, hcvrp_size + 1]) | ||
d = d[:, :-1] # the demand of depot is 0, which do not need to generate here | ||
|
||
# vehicle feature | ||
speed = rnd.uniform(0.5, 1, size=(dataset_size, veh_num)) | ||
cap = rnd.randint(20, 41, size=(dataset_size, veh_num)) | ||
|
||
data = { | ||
'depot': depot.astype(np.float32), | ||
'loc': cust.astype(np.float32), | ||
'demand': d.astype(np.float32), | ||
'capacity': cap.astype(np.float32), | ||
'speed': speed.astype(np.float32) | ||
} | ||
return data | ||
|
||
if __name__ == "__main__": | ||
parser = argparse.ArgumentParser() | ||
# parser.add_argument("--filename", help="Filename of the dataset to create (ignores datadir)") | ||
parser.add_argument("--dataset_size", type=int, default=1280, help="Size of the dataset") | ||
parser.add_argument("--veh_num", type=int, default=3, help="number of the vehicles") | ||
parser.add_argument('--graph_size', type=int, default=40, | ||
help="Number of customers") | ||
|
||
opts = parser.parse_args() | ||
data_dir = 'data' | ||
problem = 'hcvrp' | ||
datadir = os.path.join(data_dir, problem) | ||
os.makedirs(datadir, exist_ok=True) | ||
seed = 24610 # the last seed used for generating HCVRP data | ||
# np.random.seed(seed) | ||
print(opts.dataset_size, opts.graph_size, opts.veh_num) | ||
filename = os.path.join(datadir, '{}_v{}_{}_seed{}.pkl'.format(problem, opts.veh_num, opts.graph_size, seed)) | ||
|
||
dataset = generate_hcvrp_data(seed,opts.dataset_size, opts.graph_size, opts.veh_num) | ||
print({k:dataset[k][0] for k in dataset}) | ||
save_dataset(dataset, filename) | ||
|
||
|
||
|
Empty file.
Empty file.
Oops, something went wrong.