forked from HiKapok/SSD.TensorFlow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_ssd.py
493 lines (416 loc) · 25.9 KB
/
train_ssd.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
# Copyright 2018 Changan Wang
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import sys
import tensorflow as tf
from net import ssd_net
from dataset import dataset_common
from preprocessing import ssd_preprocessing
from utility import anchor_manipulator
from utility import scaffolds
# hardware related configuration
tf.app.flags.DEFINE_integer(
'num_readers', 8,
'The number of parallel readers that read data from the dataset.')
tf.app.flags.DEFINE_integer(
'num_preprocessing_threads', 24,
'The number of threads used to create the batches.')
tf.app.flags.DEFINE_integer(
'num_cpu_threads', 0,
'The number of cpu cores used to train.')
tf.app.flags.DEFINE_float(
'gpu_memory_fraction', 1., 'GPU memory fraction to use.')
# scaffold related configuration
tf.app.flags.DEFINE_string(
'data_dir', './dataset/tfrecords',
'The directory where the dataset input data is stored.')
tf.app.flags.DEFINE_integer(
'num_classes', 21, 'Number of classes to use in the dataset.')
tf.app.flags.DEFINE_string(
'model_dir', './logs/',
'The directory where the model will be stored.')
tf.app.flags.DEFINE_integer(
'log_every_n_steps', 10,
'The frequency with which logs are printed.')
tf.app.flags.DEFINE_integer(
'save_summary_steps', 500,
'The frequency with which summaries are saved, in seconds.')
tf.app.flags.DEFINE_integer(
'save_checkpoints_secs', 7200,
'The frequency with which the model is saved, in seconds.')
# model related configuration
tf.app.flags.DEFINE_integer(
'train_image_size', 300,
'The size of the input image for the model to use.')
tf.app.flags.DEFINE_integer(
'train_epochs', None,
'The number of epochs to use for training.')
tf.app.flags.DEFINE_integer(
'max_number_of_steps', 120000,
'The max number of steps to use for training.')
tf.app.flags.DEFINE_integer(
'batch_size', 32,
'Batch size for training and evaluation.')
tf.app.flags.DEFINE_string(
'data_format', 'channels_first', # 'channels_first' or 'channels_last'
'A flag to override the data format used in the model. channels_first '
'provides a performance boost on GPU but is not always compatible '
'with CPU. If left unspecified, the data format will be chosen '
'automatically based on whether TensorFlow was built for CPU or GPU.')
tf.app.flags.DEFINE_float(
'negative_ratio', 3., 'Negative ratio in the loss function.')
tf.app.flags.DEFINE_float(
'match_threshold', 0.5, 'Matching threshold in the loss function.')
tf.app.flags.DEFINE_float(
'neg_threshold', 0.5, 'Matching threshold for the negtive examples in the loss function.')
# optimizer related configuration
tf.app.flags.DEFINE_integer(
'tf_random_seed', 20180503, 'Random seed for TensorFlow initializers.')
tf.app.flags.DEFINE_float(
'weight_decay', 5e-4, 'The weight decay on the model weights.')
tf.app.flags.DEFINE_float(
'momentum', 0.9,
'The momentum for the MomentumOptimizer and RMSPropOptimizer.')
tf.app.flags.DEFINE_float('learning_rate', 1e-3, 'Initial learning rate.')
tf.app.flags.DEFINE_float(
'end_learning_rate', 0.000001,
'The minimal end learning rate used by a polynomial decay learning rate.')
# for learning rate piecewise_constant decay
tf.app.flags.DEFINE_string(
'decay_boundaries', '80000, 100000',
'Learning rate decay boundaries by global_step (comma-separated list).')
tf.app.flags.DEFINE_string(
'lr_decay_factors', '1, 0.1, 0.01',
'The values of learning_rate decay factor for each segment between boundaries (comma-separated list).')
# checkpoint related configuration
tf.app.flags.DEFINE_string(
'checkpoint_path', './model',
'The path to a checkpoint from which to fine-tune.')
tf.app.flags.DEFINE_string(
'checkpoint_model_scope', 'vgg_16',
'Model scope in the checkpoint. None if the same as the trained model.')
tf.app.flags.DEFINE_string(
'model_scope', 'ssd300',
'Model scope name used to replace the name_scope in checkpoint.')
tf.app.flags.DEFINE_string(
'checkpoint_exclude_scopes', 'ssd300/multibox_head, ssd300/additional_layers, ssd300/conv4_3_scale',
'Comma-separated list of scopes of variables to exclude when restoring from a checkpoint.')
tf.app.flags.DEFINE_boolean(
'ignore_missing_vars', True,
'When restoring a checkpoint would ignore missing variables.')
FLAGS = tf.app.flags.FLAGS
#CUDA_VISIBLE_DEVICES
def validate_batch_size_for_multi_gpu(batch_size):
"""For multi-gpu, batch-size must be a multiple of the number of
available GPUs.
Note that this should eventually be handled by replicate_model_fn
directly. Multi-GPU support is currently experimental, however,
so doing the work here until that feature is in place.
"""
from tensorflow.python.client import device_lib
local_device_protos = device_lib.list_local_devices()
num_gpus = sum([1 for d in local_device_protos if d.device_type == 'GPU'])
if not num_gpus:
raise ValueError('Multi-GPU mode was specified, but no GPUs '
'were found. To use CPU, run without --multi_gpu.')
remainder = batch_size % num_gpus
if remainder:
err = ('When running with multiple GPUs, batch size '
'must be a multiple of the number of available GPUs. '
'Found {} GPUs with a batch size of {}; try --batch_size={} instead.'
).format(num_gpus, batch_size, batch_size - remainder)
raise ValueError(err)
return num_gpus
def get_init_fn():
return scaffolds.get_init_fn_for_scaffold(FLAGS.model_dir, FLAGS.checkpoint_path,
FLAGS.model_scope, FLAGS.checkpoint_model_scope,
FLAGS.checkpoint_exclude_scopes, FLAGS.ignore_missing_vars,
name_remap={'/kernel': '/weights', '/bias': '/biases'})
# couldn't find better way to pass params from input_fn to model_fn
# some tensors used by model_fn must be created in input_fn to ensure they are in the same graph
# but when we put these tensors to labels's dict, the replicate_model_fn will split them into each GPU
# the problem is that they shouldn't be splited
global_anchor_info = dict()
def input_pipeline(dataset_pattern='train-*', is_training=True, batch_size=FLAGS.batch_size):
def input_fn():
out_shape = [FLAGS.train_image_size] * 2
anchor_creator = anchor_manipulator.AnchorCreator(out_shape,
layers_shapes = [(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)],
anchor_scales = [(0.1,), (0.2,), (0.375,), (0.55,), (0.725,), (0.9,)],
extra_anchor_scales = [(0.1414,), (0.2739,), (0.4541,), (0.6315,), (0.8078,), (0.9836,)],
anchor_ratios = [(2., .5), (2., 3., .5, 0.3333), (2., 3., .5, 0.3333), (2., 3., .5, 0.3333), (2., .5), (2., .5)],
layer_steps = [8, 16, 32, 64, 100, 300])
all_anchors, all_num_anchors_depth, all_num_anchors_spatial = anchor_creator.get_all_anchors()
num_anchors_per_layer = []
for ind in range(len(all_anchors)):
num_anchors_per_layer.append(all_num_anchors_depth[ind] * all_num_anchors_spatial[ind])
anchor_encoder_decoder = anchor_manipulator.AnchorEncoder(allowed_borders = [1.0] * 6,
positive_threshold = FLAGS.match_threshold,
ignore_threshold = FLAGS.neg_threshold,
prior_scaling=[0.1, 0.1, 0.2, 0.2])
image_preprocessing_fn = lambda image_, labels_, bboxes_ : ssd_preprocessing.preprocess_image(image_, labels_, bboxes_, out_shape, is_training=is_training, data_format=FLAGS.data_format, output_rgb=False)
anchor_encoder_fn = lambda glabels_, gbboxes_: anchor_encoder_decoder.encode_all_anchors(glabels_, gbboxes_, all_anchors, all_num_anchors_depth, all_num_anchors_spatial)
image, _, shape, loc_targets, cls_targets, match_scores = dataset_common.slim_get_batch(FLAGS.num_classes,
batch_size,
('train' if is_training else 'val'),
os.path.join(FLAGS.data_dir, dataset_pattern),
FLAGS.num_readers,
FLAGS.num_preprocessing_threads,
image_preprocessing_fn,
anchor_encoder_fn,
num_epochs=FLAGS.train_epochs,
is_training=is_training)
global global_anchor_info
global_anchor_info = {'decode_fn': lambda pred : anchor_encoder_decoder.decode_all_anchors(pred, num_anchors_per_layer),
'num_anchors_per_layer': num_anchors_per_layer,
'all_num_anchors_depth': all_num_anchors_depth }
return image, {'shape': shape, 'loc_targets': loc_targets, 'cls_targets': cls_targets, 'match_scores': match_scores}
return input_fn
def modified_smooth_l1(bbox_pred, bbox_targets, bbox_inside_weights=1., bbox_outside_weights=1., sigma=1.):
"""
ResultLoss = outside_weights * SmoothL1(inside_weights * (bbox_pred - bbox_targets))
SmoothL1(x) = 0.5 * (sigma * x)^2, if |x| < 1 / sigma^2
|x| - 0.5 / sigma^2, otherwise
"""
with tf.name_scope('smooth_l1', [bbox_pred, bbox_targets]):
sigma2 = sigma * sigma
inside_mul = tf.multiply(bbox_inside_weights, tf.subtract(bbox_pred, bbox_targets))
smooth_l1_sign = tf.cast(tf.less(tf.abs(inside_mul), 1.0 / sigma2), tf.float32)
smooth_l1_option1 = tf.multiply(tf.multiply(inside_mul, inside_mul), 0.5 * sigma2)
smooth_l1_option2 = tf.subtract(tf.abs(inside_mul), 0.5 / sigma2)
smooth_l1_result = tf.add(tf.multiply(smooth_l1_option1, smooth_l1_sign),
tf.multiply(smooth_l1_option2, tf.abs(tf.subtract(smooth_l1_sign, 1.0))))
outside_mul = tf.multiply(bbox_outside_weights, smooth_l1_result)
return outside_mul
# from scipy.misc import imread, imsave, imshow, imresize
# import numpy as np
# from utility import draw_toolbox
# def save_image_with_bbox(image, labels_, scores_, bboxes_):
# if not hasattr(save_image_with_bbox, "counter"):
# save_image_with_bbox.counter = 0 # it doesn't exist yet, so initialize it
# save_image_with_bbox.counter += 1
# img_to_draw = np.copy(image)
# img_to_draw = draw_toolbox.bboxes_draw_on_img(img_to_draw, labels_, scores_, bboxes_, thickness=2)
# imsave(os.path.join('./debug/{}.jpg').format(save_image_with_bbox.counter), img_to_draw)
# return save_image_with_bbox.counter
def ssd_model_fn(features, labels, mode, params):
"""model_fn for SSD to be used with our Estimator."""
shape = labels['shape']
loc_targets = labels['loc_targets']
cls_targets = labels['cls_targets']
match_scores = labels['match_scores']
global global_anchor_info
decode_fn = global_anchor_info['decode_fn']
num_anchors_per_layer = global_anchor_info['num_anchors_per_layer']
all_num_anchors_depth = global_anchor_info['all_num_anchors_depth']
# bboxes_pred = decode_fn(loc_targets[0])
# bboxes_pred = [tf.reshape(preds, [-1, 4]) for preds in bboxes_pred]
# bboxes_pred = tf.concat(bboxes_pred, axis=0)
# save_image_op = tf.py_func(save_image_with_bbox,
# [ssd_preprocessing.unwhiten_image(features[0]),
# tf.clip_by_value(cls_targets[0], 0, tf.int64.max),
# match_scores[0],
# bboxes_pred],
# tf.int64, stateful=True)
# with tf.control_dependencies([save_image_op]):
#print(all_num_anchors_depth)
with tf.variable_scope(params['model_scope'], default_name=None, values=[features], reuse=tf.AUTO_REUSE):
backbone = ssd_net.VGG16Backbone(params['data_format'])
feature_layers = backbone.forward(features, training=(mode == tf.estimator.ModeKeys.TRAIN))
#print(feature_layers)
location_pred, cls_pred = ssd_net.multibox_head(feature_layers, params['num_classes'], all_num_anchors_depth, data_format=params['data_format'])
if params['data_format'] == 'channels_first':
cls_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in cls_pred]
location_pred = [tf.transpose(pred, [0, 2, 3, 1]) for pred in location_pred]
cls_pred = [tf.reshape(pred, [tf.shape(features)[0], -1, params['num_classes']]) for pred in cls_pred]
location_pred = [tf.reshape(pred, [tf.shape(features)[0], -1, 4]) for pred in location_pred]
cls_pred = tf.concat(cls_pred, axis=1)
location_pred = tf.concat(location_pred, axis=1)
cls_pred = tf.reshape(cls_pred, [-1, params['num_classes']])
location_pred = tf.reshape(location_pred, [-1, 4])
with tf.device('/cpu:0'):
with tf.control_dependencies([cls_pred, location_pred]):
with tf.name_scope('post_forward'):
#bboxes_pred = decode_fn(location_pred)
bboxes_pred = tf.map_fn(lambda _preds : decode_fn(_preds),
tf.reshape(location_pred, [tf.shape(features)[0], -1, 4]),
dtype=[tf.float32] * len(num_anchors_per_layer), back_prop=False)
#cls_targets = tf.Print(cls_targets, [tf.shape(bboxes_pred[0]),tf.shape(bboxes_pred[1]),tf.shape(bboxes_pred[2]),tf.shape(bboxes_pred[3])])
bboxes_pred = [tf.reshape(preds, [-1, 4]) for preds in bboxes_pred]
bboxes_pred = tf.concat(bboxes_pred, axis=0)
flaten_cls_targets = tf.reshape(cls_targets, [-1])
flaten_match_scores = tf.reshape(match_scores, [-1])
flaten_loc_targets = tf.reshape(loc_targets, [-1, 4])
# each positive examples has one label
positive_mask = flaten_cls_targets > 0
n_positives = tf.count_nonzero(positive_mask)
batch_n_positives = tf.count_nonzero(cls_targets, -1)
batch_negtive_mask = tf.equal(cls_targets, 0)#tf.logical_and(tf.equal(cls_targets, 0), match_scores > 0.)
batch_n_negtives = tf.count_nonzero(batch_negtive_mask, -1)
batch_n_neg_select = tf.cast(params['negative_ratio'] * tf.cast(batch_n_positives, tf.float32), tf.int32)
batch_n_neg_select = tf.minimum(batch_n_neg_select, tf.cast(batch_n_negtives, tf.int32))
# hard negative mining for classification
predictions_for_bg = tf.nn.softmax(tf.reshape(cls_pred, [tf.shape(features)[0], -1, params['num_classes']]))[:, :, 0]
prob_for_negtives = tf.where(batch_negtive_mask,
0. - predictions_for_bg,
# ignore all the positives
0. - tf.ones_like(predictions_for_bg))
topk_prob_for_bg, _ = tf.nn.top_k(prob_for_negtives, k=tf.shape(prob_for_negtives)[1])
score_at_k = tf.gather_nd(topk_prob_for_bg, tf.stack([tf.range(tf.shape(features)[0]), batch_n_neg_select - 1], axis=-1))
selected_neg_mask = prob_for_negtives >= tf.expand_dims(score_at_k, axis=-1)
# include both selected negtive and all positive examples
final_mask = tf.stop_gradient(tf.logical_or(tf.reshape(tf.logical_and(batch_negtive_mask, selected_neg_mask), [-1]), positive_mask))
total_examples = tf.count_nonzero(final_mask)
cls_pred = tf.boolean_mask(cls_pred, final_mask)
location_pred = tf.boolean_mask(location_pred, tf.stop_gradient(positive_mask))
flaten_cls_targets = tf.boolean_mask(tf.clip_by_value(flaten_cls_targets, 0, params['num_classes']), final_mask)
flaten_loc_targets = tf.stop_gradient(tf.boolean_mask(flaten_loc_targets, positive_mask))
predictions = {
'classes': tf.argmax(cls_pred, axis=-1),
'probabilities': tf.reduce_max(tf.nn.softmax(cls_pred, name='softmax_tensor'), axis=-1),
'loc_predict': bboxes_pred }
cls_accuracy = tf.metrics.accuracy(flaten_cls_targets, predictions['classes'])
metrics = {'cls_accuracy': cls_accuracy}
# Create a tensor named train_accuracy for logging purposes.
tf.identity(cls_accuracy[1], name='cls_accuracy')
tf.summary.scalar('cls_accuracy', cls_accuracy[1])
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
# Calculate loss, which includes softmax cross entropy and L2 regularization.
#cross_entropy = tf.cond(n_positives > 0, lambda: tf.losses.sparse_softmax_cross_entropy(labels=flaten_cls_targets, logits=cls_pred), lambda: 0.)# * (params['negative_ratio'] + 1.)
#flaten_cls_targets=tf.Print(flaten_cls_targets, [flaten_loc_targets],summarize=50000)
cross_entropy = tf.losses.sparse_softmax_cross_entropy(labels=flaten_cls_targets, logits=cls_pred) * (params['negative_ratio'] + 1.)
# Create a tensor named cross_entropy for logging purposes.
tf.identity(cross_entropy, name='cross_entropy_loss')
tf.summary.scalar('cross_entropy_loss', cross_entropy)
#loc_loss = tf.cond(n_positives > 0, lambda: modified_smooth_l1(location_pred, tf.stop_gradient(flaten_loc_targets), sigma=1.), lambda: tf.zeros_like(location_pred))
loc_loss = modified_smooth_l1(location_pred, flaten_loc_targets, sigma=1.)
#loc_loss = modified_smooth_l1(location_pred, tf.stop_gradient(gtargets))
loc_loss = tf.reduce_mean(tf.reduce_sum(loc_loss, axis=-1), name='location_loss')
tf.summary.scalar('location_loss', loc_loss)
tf.losses.add_loss(loc_loss)
l2_loss_vars = []
for trainable_var in tf.trainable_variables():
if '_bn' not in trainable_var.name:
if 'conv4_3_scale' not in trainable_var.name:
l2_loss_vars.append(tf.nn.l2_loss(trainable_var))
else:
l2_loss_vars.append(tf.nn.l2_loss(trainable_var) * 0.1)
# Add weight decay to the loss. We exclude the batch norm variables because
# doing so leads to a small improvement in accuracy.
total_loss = tf.add(cross_entropy + loc_loss, tf.multiply(params['weight_decay'], tf.add_n(l2_loss_vars), name='l2_loss'), name='total_loss')
if mode == tf.estimator.ModeKeys.TRAIN:
global_step = tf.train.get_or_create_global_step()
lr_values = [params['learning_rate'] * decay for decay in params['lr_decay_factors']]
learning_rate = tf.train.piecewise_constant(tf.cast(global_step, tf.int32),
[int(_) for _ in params['decay_boundaries']],
lr_values)
truncated_learning_rate = tf.maximum(learning_rate, tf.constant(params['end_learning_rate'], dtype=learning_rate.dtype), name='learning_rate')
# Create a tensor named learning_rate for logging purposes.
tf.summary.scalar('learning_rate', truncated_learning_rate)
optimizer = tf.train.MomentumOptimizer(learning_rate=truncated_learning_rate,
momentum=params['momentum'])
optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)
# Batch norm requires update_ops to be added as a train_op dependency.
update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
with tf.control_dependencies(update_ops):
train_op = optimizer.minimize(total_loss, global_step)
else:
train_op = None
return tf.estimator.EstimatorSpec(
mode=mode,
predictions=predictions,
loss=total_loss,
train_op=train_op,
eval_metric_ops=metrics,
scaffold=tf.train.Scaffold(init_fn=get_init_fn()))
def parse_comma_list(args):
return [float(s.strip()) for s in args.split(',')]
def main(_):
# Using the Winograd non-fused algorithms provides a small performance boost.
os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=FLAGS.gpu_memory_fraction)
config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, intra_op_parallelism_threads=FLAGS.num_cpu_threads, inter_op_parallelism_threads=FLAGS.num_cpu_threads, gpu_options=gpu_options)
num_gpus = validate_batch_size_for_multi_gpu(FLAGS.batch_size)
# Set up a RunConfig to only save checkpoints once per training cycle.
run_config = tf.estimator.RunConfig().replace(
save_checkpoints_secs=FLAGS.save_checkpoints_secs).replace(
save_checkpoints_steps=None).replace(
save_summary_steps=FLAGS.save_summary_steps).replace(
keep_checkpoint_max=5).replace(
tf_random_seed=FLAGS.tf_random_seed).replace(
log_step_count_steps=FLAGS.log_every_n_steps).replace(
session_config=config)
replicate_ssd_model_fn = tf.contrib.estimator.replicate_model_fn(ssd_model_fn, loss_reduction=tf.losses.Reduction.MEAN)
ssd_detector = tf.estimator.Estimator(
model_fn=replicate_ssd_model_fn, model_dir=FLAGS.model_dir, config=run_config,
params={
'num_gpus': num_gpus,
'data_format': FLAGS.data_format,
'batch_size': FLAGS.batch_size,
'model_scope': FLAGS.model_scope,
'num_classes': FLAGS.num_classes,
'negative_ratio': FLAGS.negative_ratio,
'match_threshold': FLAGS.match_threshold,
'neg_threshold': FLAGS.neg_threshold,
'weight_decay': FLAGS.weight_decay,
'momentum': FLAGS.momentum,
'learning_rate': FLAGS.learning_rate,
'end_learning_rate': FLAGS.end_learning_rate,
'decay_boundaries': parse_comma_list(FLAGS.decay_boundaries),
'lr_decay_factors': parse_comma_list(FLAGS.lr_decay_factors),
})
tensors_to_log = {
'lr': 'learning_rate',
'ce': 'cross_entropy_loss',
'loc': 'location_loss',
'loss': 'total_loss',
'l2': 'l2_loss',
'acc': 'post_forward/cls_accuracy',
}
logging_hook = tf.train.LoggingTensorHook(tensors=tensors_to_log, every_n_iter=FLAGS.log_every_n_steps,
formatter=lambda dicts: (', '.join(['%s=%.6f' % (k, v) for k, v in dicts.items()])))
#hook = tf.train.ProfilerHook(save_steps=50, output_dir='.', show_memory=True)
print('Starting a training cycle.')
ssd_detector.train(input_fn=input_pipeline(dataset_pattern='train-*', is_training=True, batch_size=FLAGS.batch_size),
hooks=[logging_hook], max_steps=FLAGS.max_number_of_steps)
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.INFO)
tf.app.run()
# cls_targets = tf.reshape(cls_targets, [-1])
# match_scores = tf.reshape(match_scores, [-1])
# loc_targets = tf.reshape(loc_targets, [-1, 4])
# # each positive examples has one label
# positive_mask = cls_targets > 0
# n_positives = tf.count_nonzero(positive_mask)
# negtive_mask = tf.logical_and(tf.equal(cls_targets, 0), match_scores > 0.)
# n_negtives = tf.count_nonzero(negtive_mask)
# n_neg_to_select = tf.cast(params['negative_ratio'] * tf.cast(n_positives, tf.float32), tf.int32)
# n_neg_to_select = tf.minimum(n_neg_to_select, tf.cast(n_negtives, tf.int32))
# # hard negative mining for classification
# predictions_for_bg = tf.nn.softmax(cls_pred)[:, 0]
# prob_for_negtives = tf.where(negtive_mask,
# 0. - predictions_for_bg,
# # ignore all the positives
# 0. - tf.ones_like(predictions_for_bg))
# topk_prob_for_bg, _ = tf.nn.top_k(prob_for_negtives, k=n_neg_to_select)
# selected_neg_mask = prob_for_negtives > topk_prob_for_bg[-1]
# # include both selected negtive and all positive examples
# final_mask = tf.stop_gradient(tf.logical_or(tf.logical_and(negtive_mask, selected_neg_mask), positive_mask))
# total_examples = tf.count_nonzero(final_mask)
# glabels = tf.boolean_mask(tf.clip_by_value(cls_targets, 0, FLAGS.num_classes), final_mask)
# cls_pred = tf.boolean_mask(cls_pred, final_mask)
# location_pred = tf.boolean_mask(location_pred, tf.stop_gradient(positive_mask))
# loc_targets = tf.boolean_mask(loc_targets, tf.stop_gradient(positive_mask))