-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsolve_crane_problem_anderson.py
135 lines (111 loc) · 5.63 KB
/
solve_crane_problem_anderson.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
import casadi as cs
import numpy as np
from src.fslp import fslp
from examples.P2P_timeoptimal_crane_problem import crane_problem as tp
testproblem = tp(N=20)
(x, f, g, lbg, ubg, lbx, ubx, x0) = testproblem.create_problem()
# %% SOLVE NLP WITH CASADI FEASIBLE_SQP_METHOD
nlp = {'x': x, 'f': f, 'g': g}
opts_sqpmethod = { 'solve_type': 'SLP',
'qpsol': 'cplex',
'qpsol_options': {'dump_to_file':True, 'error_on_fail': False, 'verbose':False, 'tol':1e-9, 'qp_method':2, 'warm_start':True, 'dep_check':2, 'cplex':{'CPXPARAM_Simplex_Display':2, 'CPXPARAM_ScreenOutput':1}},
# 'qpsol_options': {'osqp':{'verbose':True}},
# 'print_time': False,
# 'convexify_strategy':'regularize'
# 'use_anderson': True,
# 'anderson_memory':1
}
opts_sqpmethod['max_iter']=1
opts_sqpmethod['max_inner_iter']=0
opts_sqpmethod['tr_rad0']= 1.0
opts_sqpmethod['feas_tol']= 1e-8
opts_sqpmethod['optim_tol']= 1e-8
opts_sqpmethod['hess_lag']= testproblem.create_gn_hessian_cpp()
#opts_sqpmethod[# 'hessian_approximation']= 'limited-memory',
#opts_sqpmethod[# 'lbfgs_memory']= 3,
opts_sqpmethod['tr_scale_vector']= testproblem.create_scaling_matrices_cpp()
# opts_sqpmethod['print_time'] = False
solver = cs.nlpsol("solver", "ipopt", nlp)
# solver = cs.nlpsol("S", "feasiblesqpmethod", nlp, opts_sqpmethod)
# # Solve the problem
# res = solver(x0 = x0, ubg = ubg, lbg = lbg, lbx = lbx, ubx=ubx)
# x_opt_ipopt = res['x']
# %% CREATE PROBLEM AND INIT DICTS FOR FP-SQP SOLVER
problem_dict = {}
problem_dict['x'] = x
problem_dict['f'] = f
problem_dict['g'] = g
init_dict = {}
init_dict['lbx'] = lbx
init_dict['ubx'] = ubx
init_dict['lbg'] = lbg
init_dict['ubg'] = ubg
init_dict['x0'] = x0
# init_dict['lam_g0'] = lam_g_0
init_dict['tr_rad0'] = 1.0
# Time optimal crane unslacked state constraints
init_dict['tr_scale_mat0'], init_dict['tr_scale_mat_inv0'] = testproblem.create_scaling_matrices_python()
# %% CREATE OPTIONS
opts = {}
# opts['solver_type'] = 'SQP'
# opts['subproblem_sol'] = 'qpoases'
# opts['subproblem_sol_opts'] = {'nWSR':1000000, "printLevel": "none", "sparse":True, 'hessian_type': 'semidef'}#, 'enableEqualities':True}
solve_str = 'ipopt'
# Create an NLP solver
if solve_str == 'ipopt':
opts = { 'subproblem_sol': 'nlpsol',
'subproblem_sol_opts': { "nlpsol": "ipopt",
"verbose": True,
"print_time": False,
"nlpsol_options": {"ipopt": { "print_level": 0,
"sb": "yes",
"fixed_variable_treatment": "make_constraint",
"hessian_constant": "yes",
"jac_c_constant": "yes",
"jac_d_constant": "yes",
"tol": 1e-12,
"tiny_step_tol": 1e-20,
"mumps_scaling": 0,
"honor_original_bounds": "no",
"bound_relax_factor": 0},
"print_time": False},
"error_on_fail": False}}
elif solve_str == 'qpoases':
opts = { 'solve_type': 'SQP',
'subproblem_sol': 'qpoases',
'subproblem_sol_opts': { 'nWSR':1000000,
# 'schur': True,
# 'linsol_plugin': 'ma57',
'printLevel': 'none',
'sparse':True,
'hessian_type': 'semidef'
# 'enableEqualities':True
}}
elif solve_str == 'cplex':
opts['subproblem_sol'] = 'cplex'
opts['subproblem_sol_opts'] = {'dump_to_file':False, 'error_on_fail': False, 'verbose':False, 'tol':1e-9, 'qp_method':2, 'warm_start':True, 'dep_check':2, 'cplex':{'CPXPARAM_Simplex_Display':1, 'CPXPARAM_ScreenOutput':1, 'CPXPARAM_ParamDisplay':True, 'CPXPARAM_Read_DataCheck':1, 'CPXPARAM_Conflict_Display':2, 'CPXPARAM_Tune_Display':3, 'CPXPARAM_Preprocessing_Dual':1}}#, 'cplex':{'tol':1e-12}}
opts['solver_type'] = 'SLP'
opts['max_iter'] = 20
opts['feas_strategy'] = 2
opts['optim_tol'] = 1e-8
opts['max_inner_iter'] = 50
opts['tr_eta1'] = 0.25
opts['tr_eta2'] = 0.75
opts['tr_alpha1'] = 0.25
opts['tr_alpha2'] = 2
opts['tr_tol'] = 1e-8
opts['opt_check_slacks'] = True
# opts['verbose'] = False
opts['testproblem_obj'] = testproblem
opts['hess_lag_fun'] = testproblem.create_gn_hessian_python()
opts['n_slacks_start'] = 6
opts['n_slacks_end'] = 6
opts['feas_tol'] = 1e-8
# opts['gradient_correction'] = True
# opts['single_shooting_correction'] = True
# %%
feasible_solver = fslp.FSLP_Method()
x_sol, f_sol = feasible_solver.solve(problem_dict, init_dict, opts)
testproblem.plot([x_sol, x_opt_ipopt], ['FSLP', 'IPOPT'])
print("Optimal time FP-SQP: ", testproblem.get_optimal_time(x_sol))
print("Optimal time IPOPT: ", testproblem.get_optimal_time(x_opt_ipopt))