Joint project work with Simon Queric
MCGDiff_GMM
: Monte Carlo Guided Diffusion for bayesian linear inverse problems on a Gaussian Mixture Model
Depending on the specific folder, the requirements are different.
[1] G. Cardoso, Y. J. E. Idrissi, S. L. Corff, and E. Moulines. Monte carlo guided diffusion for bayesian linear inverse problems, 2023.
[2] H. Chung, J. Kim, M. T. Mccann, M. L. Klasky, and J. C. Ye. Diffusion posterior sampling for general noisy inverse problems, 2023.
[3] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models, 2020.
[4] J. Song, A. Vahdat, M. Mardani, and J. Kautz. Pseudoinverse-guided diffusion models for inverse problems. In International Conference on Learning Representations, 2023.
[5] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative modeling through stochastic differential equations, 2021.
[6] L. Wu, B. L. Trippe, C. A. Naesseth, D. M. Blei, and J. P. Cunningham. Practical and asymptoti- cally exact conditional sampling in diffusion models, 2023