-
Notifications
You must be signed in to change notification settings - Fork 120
/
val_ddp.py
272 lines (228 loc) · 11.2 KB
/
val_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import torch
import numpy as np
import argparse
from tqdm.autonotebook import tqdm
import os
from utils import smp_metrics
from utils.utils import ConfusionMatrix, postprocess, scale_coords, process_batch, ap_per_class, fitness, \
save_checkpoint, BBoxTransform, ClipBoxes, boolean_string, Params
from backbone import HybridNetsBackbone
from hybridnets.dataset import BddDataset
from torchvision import transforms
import torch.distributed as dist
import time
@torch.no_grad()
def val(model, rank, optimizer, val_generator, params, opt, writer, epoch, step, best_fitness, best_loss, best_epoch):
model.eval()
loss_regression_ls = []
loss_classification_ls = []
loss_segmentation_ls = []
jdict, stats, ap, ap_class = [], [], [], []
iou_thresholds = torch.linspace(0.5, 0.95, 10).cuda() # iou vector for mAP@0.5:0.95
num_thresholds = iou_thresholds.numel()
names = {i: v for i, v in enumerate(params.obj_list)}
nc = len(names)
seen = 0
confusion_matrix = ConfusionMatrix(nc=nc)
s = ('%15s' + '%11s' * 14) % (
'Class', 'Images', 'Labels', 'P', 'R', 'mAP@.5', 'mAP@.5:.95', 'mIoU', 'mF1', 'fIoU', 'sIoU', 'rIoU', 'rF1', 'lIoU', 'lF1')
dt, p, r, f1, mp, mr, map50, map = [0.0, 0.0, 0.0], 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
iou_ls = [[] for _ in range(3)]
f1_ls = [[] for _ in range(3)]
regressBoxes = BBoxTransform()
clipBoxes = ClipBoxes()
progress_bar = tqdm(val_generator, ascii=True)
for iter, data in enumerate(progress_bar):
if rank == 0:
progress_bar.update()
imgs = data['img'].to(rank)
annot = data['annot'].to(rank)
seg_annot = data['segmentation'].to(rank)
filenames = data['filenames']
shapes = data['shapes']
cls_loss, reg_loss, seg_loss, regression, classification, anchors, segmentation = model(imgs, annot,
seg_annot,
obj_list=params.obj_list)
cls_loss = cls_loss.mean()
reg_loss = reg_loss.mean()
seg_loss = seg_loss.mean()
if opt.cal_map:
out = postprocess(imgs.detach(),
torch.stack([anchors[0]] * imgs.shape[0], 0).detach(), regression.detach(),
classification.detach(),
regressBoxes, clipBoxes,
0.001, 0.6) # 0.5, 0.3
for i in range(annot.size(0)):
seen += 1
labels = annot[i]
labels = labels[labels[:, 4] != -1]
ou = out[i]
nl = len(labels)
pred = np.column_stack([ou['rois'], ou['scores']])
pred = np.column_stack([pred, ou['class_ids']])
pred = torch.from_numpy(pred).cuda()
target_class = labels[:, 4].tolist() if nl else [] # target class
if len(pred) == 0:
if nl:
stats.append((torch.zeros(0, num_thresholds, dtype=torch.bool),
torch.Tensor(), torch.Tensor(), target_class))
# print("here")
continue
if nl:
pred[:, :4] = scale_coords(imgs[i][1:], pred[:, :4], shapes[i][0], shapes[i][1])
labels = scale_coords(imgs[i][1:], labels, shapes[i][0], shapes[i][1])
correct = process_batch(pred, labels, iou_thresholds)
if opt.plots:
confusion_matrix.process_batch(pred, labels)
else:
correct = torch.zeros(pred.shape[0], num_thresholds, dtype=torch.bool)
stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), target_class))
# print(stats)
# Visualization
# seg_0 = segmentation[i]
# # print('bbb', seg_0.shape)
# seg_0 = torch.argmax(seg_0, dim = 0)
# # print('before', seg_0.shape)
# seg_0 = seg_0.cpu().numpy()
# #.transpose(1, 2, 0)
# # print(seg_0.shape)
# anh = np.zeros((384,640,3))
# anh[seg_0 == 0] = (255,0,0)
# anh[seg_0 == 1] = (0,255,0)
# anh[seg_0 == 2] = (0,0,255)
# anh = np.uint8(anh)
# cv2.imwrite('segmentation-{}.jpg'.format(filenames[i]),anh)
# Convert segmentation tensor --> 3 binary 0 1
# batch_size, num_classes, height, width
_, segmentation = torch.max(segmentation, 1)
# _, seg_annot = torch.max(seg_annot, 1)
seg = torch.zeros((seg_annot.size(0), 3, 384, 640), dtype=torch.int32)
seg[:, 0, ...][segmentation == 0] = 1
seg[:, 1, ...][segmentation == 1] = 1
seg[:, 2, ...][segmentation == 2] = 1
tp_seg, fp_seg, fn_seg, tn_seg = smp_metrics.get_stats(seg.cuda(), seg_annot.long().cuda(),
mode='multilabel', threshold=None)
iou = smp_metrics.iou_score(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
# print(iou)
f1 = smp_metrics.balanced_accuracy(tp_seg, fp_seg, fn_seg, tn_seg, reduction='none')
for i in range(len(params.seg_list) + 1):
iou_ls[i].append(iou.T[i].detach().cpu().numpy())
f1_ls[i].append(f1.T[i].detach().cpu().numpy())
loss = cls_loss + reg_loss + seg_loss
if loss == 0 or not torch.isfinite(loss):
continue
loss_classification_ls.append(cls_loss.item())
loss_regression_ls.append(reg_loss.item())
loss_segmentation_ls.append(seg_loss.item())
cls_loss = np.mean(loss_classification_ls)
reg_loss = np.mean(loss_regression_ls)
seg_loss = np.mean(loss_segmentation_ls)
loss = cls_loss + reg_loss + seg_loss
if rank == 0:
print(
'Val. Epoch: {}/{}. Classification loss: {:1.5f}. Regression loss: {:1.5f}. Segmentation loss: {:1.5f}. Total loss: {:1.5f}'.format(
epoch, opt.num_epochs, cls_loss, reg_loss, seg_loss, loss))
writer.add_scalars('Loss', {'val': loss}, step)
writer.add_scalars('Regression_loss', {'val': reg_loss}, step)
writer.add_scalars('Classfication_loss', {'val': cls_loss}, step)
writer.add_scalars('Segmentation_loss', {'val': seg_loss}, step)
ddp_stats = [None for _ in range(opt.num_gpus)]
ddp_iou = [None for _ in range(opt.num_gpus)]
ddp_f1 = [None for _ in range(opt.num_gpus)]
# ddp_iou_first_decoder = [None for _ in range(opt.num_gpus)]
# ddp_iou_second_decoder = [None for _ in range(opt.num_gpus)]
dist.gather_object(stats, ddp_stats, dst=0)
dist.gather_object(iou_ls, ddp_iou, dst=0)
dist.gather_object(f1_ls, ddp_f1, dst=0)
# dist.gather_object(ddp_iou_first_decoder, iou_ls[0] + iou_ls[1], dst=0)
# dist.gather_object(ddp_iou_second_decoder, iou_ls[0] + iou_ls[2], dst=0)
else:
dist.gather_object(stats, dst=0)
dist.gather_object(iou_ls, dst=0)
dist.gather_object(f1_ls, dst=0)
if opt.cal_map and rank == 0:
start_time = time.time()
stats = [x for ranking in ddp_stats for x in ranking]
iou_ls = [[] for _ in range(3)]
for rank in ddp_iou:
for rank_iou in rank:
for i in range(3):
iou_ls[i].extend(rank_iou[i])
f1_ls = [[] for _ in range(3)]
for rank in ddp_f1:
for rank_f1 in rank:
for i in range(3):
f1_ls[i].extend(rank_f1[i])
# print("LOOP: %s seconds" % (time.time() - start_time))
# print(len(iou_ls[0]))
iou_score = np.mean(iou_ls)
# print(iou_score)
f1_score = np.mean(f1_ls)
iou_first_decoder = iou_ls[0] + iou_ls[1]
iou_first_decoder = np.mean(iou_first_decoder)
iou_second_decoder = iou_ls[0] + iou_ls[2]
iou_second_decoder = np.mean(iou_second_decoder)
for i in range(len(params.seg_list) + 1):
iou_ls[i] = np.mean(iou_ls[i])
f1_ls[i] = np.mean(f1_ls[i])
# Compute statistics
stats = [np.concatenate(x, 0) for x in zip(*stats)]
# print("UNZIP STATS: %s seconds" % (time.time() - start_time))
# print(stats[3])
# Count detected boxes per class
# boxes_per_class = np.bincount(stats[2].astype(np.int64), minlength=1)
ap50 = None
save_dir = 'plots'
os.makedirs(save_dir, exist_ok=True)
# Compute metrics
if len(stats) and stats[0].any():
p, r, f1, ap, ap_class = ap_per_class(*stats, plot=opt.plots, save_dir=save_dir, names=names)
ap50, ap = ap[:, 0], ap.mean(1) # AP@0.5, AP@0.5:0.95
mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
nt = np.bincount(stats[3].astype(np.int64), minlength=1) # number of targets per class
else:
nt = torch.zeros(1)
# print("CAL MAP: %s seconds" % (time.time() - start_time))
# Print results
print(s)
pf = '%15s' + '%11i' * 2 + '%11.3g' * 12 # print format
print(pf % ('all', seen, nt.sum(), mp, mr, map50, map, iou_score, f1_score, iou_first_decoder, iou_second_decoder,
iou_ls[1], f1_ls[1], iou_ls[2], f1_ls[2]))
# Print results per class
training = True
if (opt.verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
pf = '%15s' + '%11i' * 2 + '%11.3g' * 4
for i, c in enumerate(ap_class):
print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
# Plots
if opt.plots:
confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
confusion_matrix.tp_fp()
results = (mp, mr, map50, map, iou_score, f1_score, loss)
fi = fitness(
np.array(results).reshape(1, -1)) # weighted combination of [P, R, mAP@.5, mAP@.5-.95, iou, f1, loss ]
# if calculating map, save by best fitness
if fi > best_fitness:
best_fitness = fi
ckpt = {'epoch': epoch,
'step': step,
'best_fitness': best_fitness,
'model': model,
# 'optimizer': optimizer.state_dict()
}
print("Saving checkpoint with best fitness", fi[0])
save_checkpoint(ckpt, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}_best.pth')
else:
pass
# if not calculating map, save by best loss
# if loss + opt.es_min_delta < best_loss:
# best_loss = loss
# best_epoch = epoch
# save_checkpoint(model, opt.saved_path, f'hybridnets-d{opt.compound_coef}_{epoch}_{step}_best.pth')
# Early stopping
if epoch - best_epoch > opt.es_patience > 0:
print('[Info] Stop training at epoch {}. The lowest loss achieved is {}'.format(epoch, best_loss))
writer.close()
exit(0)
model.train()
return best_fitness, best_loss, best_epoch