Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update xgboost requirement from ==1.6.* to ==1.7.* in /docker/openproblems-python-extras #51

Open
wants to merge 1 commit into
base: master
Choose a base branch
from

Conversation

dependabot[bot]
Copy link

@dependabot dependabot bot commented on behalf of github Jan 11, 2023

Updates the requirements on xgboost to permit the latest version.

Release notes

Sourced from xgboost's releases.

1.7.3 Patch Release

1.7.3 (2023 Jan 6)

This is a patch release for bug fixes.

  • [Breaking] XGBoost Sklearn estimator method get_params no longer returns internally configured values. (#8634)
  • Fix linalg iterator, which may crash the L1 error. (#8603)
  • Fix loading pickled GPU sklearn estimator with a CPU-only XGBoost build. (#8632)
  • Fix inference with unseen categories with categorical features. (#8591, #8602)
  • CI fixes. (#8620, #8631, #8579)

Artifacts

R packages Win64: Download Linux: Download

You can verify the downloaded packages by running the following command on your Unix shell:

echo "<hash> <artifact>" | shasum -a 256 --check
0b6aa86b93aec2b3e7ec6f53a696f8bbb23e21a03b369dc5a332c55ca57bc0c4  xgboost.tar.gz
880a54e83e52c38ebada183254f55dc2bb9411bc1ff229a29f00ef39451c118c  xgboost_r_gpu_linux_1.7.3.tar.gz
76ad3c07da8adea531ab0643ed532eae38b3d1f7bc338f3b0f18620c2901092b  xgboost_r_gpu_win64_1.7.3.tar.gz
Changelog

Sourced from xgboost's changelog.

1.7.3 (2023 Jan 6)

This is a patch release for bug fixes.

  • [Breaking] XGBoost Sklearn estimator method get_params no longer returns internally configured values. (#8634)
  • Fix linalg iterator, which may crash the L1 error. (#8603)
  • Fix loading pickled GPU model with a CPU-only XGBoost build. (#8632)
  • Fix inference with unseen categories with categorical features. (#8591, #8602)
  • CI fixes. (#8620, #8631, #8579)

v1.7.2 (2022 Dec 8)

This is a patch release for bug fixes.

  • Work with newer thrust and libcudacxx (#8432)

  • Support null value in CUDA array interface namespace. (#8486)

  • Use getsockname instead of SO_DOMAIN on AIX. (#8437)

  • [pyspark] Make QDM optional based on a cuDF check (#8471)

  • [pyspark] sort qid for SparkRanker. (#8497)

  • [dask] Properly await async method client.wait_for_workers. (#8558)

  • [R] Fix CRAN test notes. (#8428)

  • [doc] Fix outdated document [skip ci]. (#8527)

  • [CI] Fix github action mismatched glibcxx. (#8551)

v1.7.1 (2022 Nov 3)

This is a patch release to incorporate the following hotfix:

  • Add back xgboost.rabit for backwards compatibility (#8411)

v1.7.0 (2022 Oct 20)

We are excited to announce the feature packed XGBoost 1.7 release. The release note will walk through some of the major new features first, then make a summary for other improvements and language-binding-specific changes.

PySpark

XGBoost 1.7 features initial support for PySpark integration. The new interface is adapted from the existing PySpark XGBoost interface developed by databricks with additional features like QuantileDMatrix and the rapidsai plugin (GPU pipeline) support. The new Spark XGBoost Python estimators not only benefit from PySpark ml facilities for powerful distributed computing but also enjoy the rest of the Python ecosystem. Users can define a custom objective, callbacks, and metrics in Python and use them with this interface on distributed clusters. The support is labeled as experimental with more features to come in future releases. For a brief introduction please visit the tutorial on XGBoost's document page. (#8355, #8344, #8335, #8284, #8271, #8283, #8250, #8231, #8219, #8245, #8217, #8200, #8173, #8172, #8145, #8117, #8131, #8088, #8082, #8085, #8066, #8068, #8067, #8020, #8385)

Due to its initial support status, the new interface has some limitations; categorical features and multi-output models are not yet supported.

Development of categorical data support

More progress on the experimental support for categorical features. In 1.7, XGBoost can handle missing values in categorical features and features a new parameter max_cat_threshold, which limits the number of categories that can be used in the split evaluation. The parameter is enabled when the partitioning algorithm is used and helps prevent over-fitting. Also, the sklearn interface can now accept the feature_types parameter to use data types other than dataframe for categorical features. (#8280, #7821, #8285, #8080, #7948, #7858, #7853, #8212, #7957, #7937, #7934)

Experimental support for federated learning and new communication collective

An exciting addition to XGBoost is the experimental federated learning support. The federated learning is implemented with a gRPC federated server that aggregates allreduce calls, and federated clients that train on local data and use existing tree methods (approx, hist, gpu_hist). Currently, this only supports horizontal federated learning (samples are split across participants, and each participant has all the features and labels). Future plans include vertical federated learning (features split across participants), and stronger privacy guarantees with homomorphic encryption and differential privacy. See Demo with NVFlare integration for example usage with nvflare.

As part of the work, XGBoost 1.7 has replaced the old rabit module with the new collective module as the network communication interface with added support for runtime backend selection. In previous versions, the backend is defined at compile time and can not be changed once built. In this new release, users can choose between rabit and federated. (#8029, #8351, #8350, #8342, #8340, #8325, #8279, #8181, #8027, #7958, #7831, #7879, #8257, #8316, #8242, #8057, #8203, #8038, #7965, #7930, #7911)

... (truncated)

Commits

You can trigger a rebase of this PR by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels Jan 11, 2023
Updates the requirements on [xgboost](https://github.com/dmlc/xgboost) to permit the latest version.
- [Release notes](https://github.com/dmlc/xgboost/releases)
- [Changelog](https://github.com/dmlc/xgboost/blob/master/NEWS.md)
- [Commits](dmlc/xgboost@v1.6.0rc1...v1.7.3)

---
updated-dependencies:
- dependency-name: xgboost
  dependency-type: direct:production
...

Signed-off-by: dependabot[bot] <support@github.com>
@dependabot dependabot bot force-pushed the dependabot/pip/docker/openproblems-python-extras/xgboost-eq-1.7.star branch from c6b7114 to e2d8b46 Compare February 13, 2023 21:09
@github-actions
Copy link

Current build status

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file python Pull requests that update Python code
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants