Skip to content

Commit

Permalink
merged
Browse files Browse the repository at this point in the history
  • Loading branch information
davisking committed May 30, 2015
2 parents d5170a3 + eadb9ee commit c4e4cd0
Show file tree
Hide file tree
Showing 8 changed files with 944 additions and 0 deletions.
1 change: 1 addition & 0 deletions dlib/control.h
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@
#define DLIB_CONTRoL_

#include "control/lspi.h"
#include "control/mpc.h"

#endif // DLIB_CONTRoL_

Expand Down
331 changes: 331 additions & 0 deletions dlib/control/mpc.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,331 @@
// Copyright (C) 2015 Davis E. King (davis@dlib.net)
// License: Boost Software License See LICENSE.txt for the full license.
#ifndef DLIB_MPC_Hh_
#define DLIB_MPC_Hh_

#include "mpc_abstract.h"
#include "../matrix.h"
#include "../algs.h"


namespace dlib
{
template <
long S_,
long I_,
unsigned long horizon_
>
class mpc
{

public:

const static long S = S_;
const static long I = I_;
const static unsigned long horizon = horizon_;

mpc(
)
{
A = 0;
B = 0;
C = 0;
Q = 0;
R = 0;
lower = 0;
upper = 0;

max_iterations = 0;
eps = 0.01;
for (unsigned long i = 0; i < horizon; ++i)
{
target[i].set_size(A.nr());
target[i] = 0;

controls[i].set_size(B.nc());
controls[i] = 0;
}
lambda = 0;
}

mpc (
const matrix<double,S,S>& A_,
const matrix<double,S,I>& B_,
const matrix<double,S,1>& C_,
const matrix<double,S,1>& Q_,
const matrix<double,I,1>& R_,
const matrix<double,I,1>& lower_,
const matrix<double,I,1>& upper_
) : A(A_), B(B_), C(C_), Q(Q_), R(R_), lower(lower_), upper(upper_)
{
// make sure requires clause is not broken
DLIB_ASSERT(A.nr() > 0 && B.nc() > 0,
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t A.nr(): " << A.nr()
<< "\n\t B.nc(): " << B.nc()
);

DLIB_ASSERT(A.nr() == A.nc() &&
A.nr() == B.nr() &&
A.nr() == C.nr() &&
A.nr() == Q.nr(),
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t A.nr(): " << A.nr()
<< "\n\t A.nc(): " << A.nc()
<< "\n\t B.nr(): " << B.nr()
<< "\n\t C.nr(): " << C.nr()
<< "\n\t Q.nr(): " << Q.nr()
);
DLIB_ASSERT(
B.nc() == R.nr() &&
B.nc() == lower.nr() &&
B.nc() == upper.nr() ,
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t B.nr(): " << B.nr()
<< "\n\t B.nc(): " << B.nc()
<< "\n\t lower.nr(): " << lower.nr()
<< "\n\t upper.nr(): " << upper.nr()
);
DLIB_ASSERT(min(Q) >= 0 &&
min(R) > 0 &&
min(upper-lower) >= 0,
"\t mpc::mpc()"
<< "\n\t invalid inputs were given to this function"
<< "\n\t min(Q): " << min(Q)
<< "\n\t min(R): " << min(R)
<< "\n\t min(upper-lower): " << min(upper-lower)
);


max_iterations = 10000;
eps = 0.01;
for (unsigned long i = 0; i < horizon; ++i)
{
target[i].set_size(A.nr());
target[i] = 0;

controls[i].set_size(B.nc());
controls[i] = 0;
}

// Bound the maximum eigenvalue of the hessian by computing the trace of the
// hessian matrix.
lambda = sum(R)*horizon;
matrix<double,S,S> temp = diagm(Q);
for (unsigned long c = 0; c < horizon; ++c)
{
lambda += trans(B)*temp*B;
temp = trans(A)*temp*A + diagm(Q);
}

}

const matrix<double,S,S>& get_A (
) const { return A; }
const matrix<double,S,I>& get_B (
) const { return B; }
const matrix<double,S,1>& get_C (
) const { return C; }
const matrix<double,S,1>& get_Q (
) const { return Q; }
const matrix<double,I,1>& get_R (
) const { return R; }
const matrix<double,I,1>& get_lower_constraints (
) const { return lower; }
const matrix<double,I,1>& get_upper_constraints (
) const { return upper; }

void set_target (
const matrix<double,S,1>& val,
const unsigned long time
)
{
DLIB_ASSERT(time < horizon,
"\t void mpc::set_target(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t time: " << time
<< "\n\t horizon: " << horizon
);

target[time] = val;
}

void set_last_target (
const matrix<double,S,1>& val
)
{
set_target(val, horizon-1);
}

const matrix<double,S,1>& get_target (
const unsigned long time
) const
{
// make sure requires clause is not broken
DLIB_ASSERT(time < horizon,
"\t matrix mpc::get_target(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t time: " << time
<< "\n\t horizon: " << horizon
);

return target[time];
}

unsigned long get_max_iterations (
) const { return max_iterations; }

void set_max_iterations (
unsigned long max_iter
)
{
max_iterations = max_iter;
}

void set_epsilon (
double eps_
)
{
// make sure requires clause is not broken
DLIB_ASSERT(eps_ > 0,
"\t void mpc::set_epsilon(eps_)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t eps_: " << eps_
);
eps = eps_;
}

double get_epsilon (
) const
{
return eps;
}

matrix<double,I,1> operator() (
const matrix<double,S,1>& current_state
)
{
// make sure requires clause is not broken
DLIB_ASSERT(min(R) > 0 && A.nr() == current_state.size(),
"\t matrix mpc::operator(current_state)"
<< "\n\t invalid inputs were given to this function"
<< "\n\t min(R): " << min(R)
<< "\n\t A.nr(): " << A.nr()
<< "\n\t current_state.size(): " << current_state.size()
);

// Shift the inputs over by one time step so we can use them to warm start the
// optimizer.
for (unsigned long i = 1; i < horizon; ++i)
controls[i-1] = controls[i];

solve_linear_mpc(current_state);

for (unsigned long i = 1; i < horizon; ++i)
target[i-1] = target[i];

return controls[0];
}

private:


// These temporary variables here just to avoid reallocating them on each call to
// operator().
matrix<double,S,1> M[horizon];
matrix<double,I,1> MM[horizon];
matrix<double,I,1> df[horizon];
matrix<double,I,1> v[horizon];
matrix<double,I,1> v_old[horizon];

void solve_linear_mpc (
const matrix<double,S,1>& initial_state
)
{
// make it so MM == trans(K)*Q*(M-target)
M[0] = A*initial_state + C;
for (unsigned long i = 1; i < horizon; ++i)
M[i] = A*M[i-1] + C;
for (unsigned long i = 0; i < horizon; ++i)
M[i] = diagm(Q)*(M[i]-target[i]);
for (long i = (long)horizon-2; i >= 0; --i)
M[i] += trans(A)*M[i+1];
for (unsigned long i = 0; i < horizon; ++i)
MM[i] = trans(B)*M[i];

for (unsigned long i = 0; i < horizon; ++i)
v[i] = controls[i];



unsigned long iter = 0;
for (; iter < max_iterations; ++iter)
{
// compute current gradient and put it into df.
// df == H*controls + MM;
M[0] = B*controls[0];
for (unsigned long i = 1; i < horizon; ++i)
M[i] = A*M[i-1] + B*controls[i];
for (unsigned long i = 0; i < horizon; ++i)
M[i] = diagm(Q)*M[i];
for (long i = (long)horizon-2; i >= 0; --i)
M[i] += trans(A)*M[i+1];
for (unsigned long i = 0; i < horizon; ++i)
df[i] = MM[i] + trans(B)*M[i] + diagm(R)*controls[i];



// Check the stopping condition, which is the magnitude of the largest element
// of the gradient.
double max_df = 0;
for (unsigned long i = 0; i < horizon; ++i)
{
for (long j = 0; j < controls[i].size(); ++j)
{
// if this variable isn't an active constraint then we care about it's
// derivative.
if (!((controls[i](j) <= lower(j) && df[i](j) > 0) ||
(controls[i](j) >= upper(j) && df[i](j) < 0)))
{
max_df = std::max(max_df, std::abs(df[i](j)));
}
}
}
if (max_df < eps)
break;


// take a step based on the gradient
for (unsigned long i = 0; i < horizon; ++i)
{
v_old[i] = v[i];
v[i] = clamp(controls[i] - 1.0/lambda * df[i], lower, upper);
controls[i] = clamp(v[i] + (std::sqrt(lambda)-1)/(std::sqrt(lambda)+1)*(v[i]-v_old[i]), lower, upper);
}
}
}

unsigned long max_iterations;
double eps;

matrix<double,S,S> A;
matrix<double,S,I> B;
matrix<double,S,1> C;
matrix<double,S,1> Q;
matrix<double,I,1> R;
matrix<double,I,1> lower;
matrix<double,I,1> upper;
matrix<double,S,1> target[horizon];

double lambda; // abound on the largest eigenvalue of the hessian matrix.
matrix<double,I,1> controls[horizon];

};

}

#endif // DLIB_MPC_Hh_

Loading

0 comments on commit c4e4cd0

Please sign in to comment.