forked from davisking/dlib
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added the --cluster option to imglab.
- Loading branch information
Showing
4 changed files
with
283 additions
and
6 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -24,6 +24,7 @@ ADD_EXECUTABLE(${target_name} | |
src/convert_idl.cpp | ||
src/common.h | ||
src/common.cpp | ||
src/cluster.cpp | ||
) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,246 @@ | ||
// Copyright (C) 2015 Davis E. King (davis@dlib.net) | ||
// License: Boost Software License See LICENSE.txt for the full license. | ||
|
||
#include "cluster.h" | ||
#include <dlib/console_progress_indicator.h> | ||
#include <dlib/image_io.h> | ||
#include <dlib/data_io.h> | ||
#include <dlib/image_transforms.h> | ||
#include <dlib/misc_api.h> | ||
#include <dlib/dir_nav.h> | ||
#include <dlib/clustering.h> | ||
#include <dlib/svm.h> | ||
|
||
// ---------------------------------------------------------------------------------------- | ||
|
||
using namespace std; | ||
using namespace dlib; | ||
|
||
// ---------------------------------------------------------------------------- | ||
|
||
struct assignment | ||
{ | ||
unsigned long c; | ||
double dist; | ||
unsigned long idx; | ||
|
||
bool operator<(const assignment& item) const | ||
{ return dist < item.dist; } | ||
}; | ||
|
||
std::vector<assignment> angular_cluster ( | ||
std::vector<matrix<double,0,1> > feats, | ||
const unsigned long num_clusters | ||
) | ||
{ | ||
DLIB_CASSERT(feats.size() != 0, "The dataset can't be empty"); | ||
for (unsigned long i = 0; i < feats.size(); ++i) | ||
{ | ||
DLIB_CASSERT(feats[i].size() == feats[0].size(), "All feature vectors must have the same length."); | ||
} | ||
|
||
// find the centroid of feats | ||
matrix<double,0,1> m; | ||
for (unsigned long i = 0; i < feats.size(); ++i) | ||
m += feats[i]; | ||
m /= feats.size(); | ||
|
||
// Now center feats and then project onto the unit sphere. The reason for projecting | ||
// onto the unit sphere is so pick_initial_centers() works in a sensible way. | ||
for (unsigned long i = 0; i < feats.size(); ++i) | ||
{ | ||
feats[i] -= m; | ||
double len = length(feats[i]); | ||
if (len != 0) | ||
feats[i] /= len; | ||
} | ||
|
||
// now do angular clustering of the points | ||
std::vector<matrix<double,0,1> > centers; | ||
pick_initial_centers(num_clusters, centers, feats, linear_kernel<matrix<double,0,1> >(), 0.05); | ||
find_clusters_using_angular_kmeans(feats, centers); | ||
|
||
// and then report the resulting assignments | ||
std::vector<assignment> assignments; | ||
for (unsigned long i = 0; i < feats.size(); ++i) | ||
{ | ||
assignment temp; | ||
temp.c = nearest_center(centers, feats[i]); | ||
temp.dist = length(feats[i] - centers[temp.c]); | ||
temp.idx = i; | ||
assignments.push_back(temp); | ||
} | ||
return assignments; | ||
} | ||
|
||
// ---------------------------------------------------------------------------------------- | ||
|
||
bool compare_first ( | ||
const std::pair<double,image_dataset_metadata::image>& a, | ||
const std::pair<double,image_dataset_metadata::image>& b | ||
) | ||
{ | ||
return a.first < b.first; | ||
} | ||
|
||
// ---------------------------------------------------------------------------------------- | ||
|
||
double mean_aspect_ratio ( | ||
const image_dataset_metadata::dataset& data | ||
) | ||
{ | ||
double sum = 0; | ||
double cnt = 0; | ||
for (unsigned long i = 0; i < data.images.size(); ++i) | ||
{ | ||
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j) | ||
{ | ||
rectangle rect = data.images[i].boxes[j].rect; | ||
if (rect.area() == 0) | ||
continue; | ||
sum += rect.width()/(double)rect.height(); | ||
++cnt; | ||
} | ||
} | ||
|
||
if (cnt != 0) | ||
return sum/cnt; | ||
else | ||
return 0; | ||
} | ||
|
||
// ---------------------------------------------------------------------------------------- | ||
|
||
int cluster_dataset( | ||
const dlib::command_line_parser& parser | ||
) | ||
{ | ||
// make sure the user entered an argument to this program | ||
if (parser.number_of_arguments() != 1) | ||
{ | ||
cerr << "The --cluster option requires you to give one XML file on the command line." << endl; | ||
return EXIT_FAILURE; | ||
} | ||
|
||
const unsigned long num_clusters = get_option(parser, "cluster", 2); | ||
const unsigned long chip_size = get_option(parser, "size", 8000); | ||
|
||
image_dataset_metadata::dataset data; | ||
|
||
set_current_dir(get_parent_directory(file(parser[0]))); | ||
image_dataset_metadata::load_image_dataset_metadata(data, parser[0]); | ||
|
||
const double aspect_ratio = mean_aspect_ratio(data); | ||
|
||
dlib::array<array2d<rgb_pixel> > images; | ||
std::vector<matrix<double,0,1> > feats; | ||
console_progress_indicator pbar(data.images.size()); | ||
// extract all the object chips and HOG features. | ||
cout << "Loading image data..." << endl; | ||
for (unsigned long i = 0; i < data.images.size(); ++i) | ||
{ | ||
pbar.print_status(i); | ||
if (data.images[i].boxes.size() == 0) | ||
continue; | ||
array2d<rgb_pixel> img, chip; | ||
load_image(img, data.images[i].filename); | ||
|
||
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j) | ||
{ | ||
if (data.images[i].boxes[j].ignore) | ||
continue; | ||
drectangle rect = data.images[i].boxes[j].rect; | ||
rect = set_aspect_ratio(rect, aspect_ratio); | ||
extract_image_chip(img, chip_details(rect, chip_size), chip); | ||
feats.push_back(extract_fhog_features(chip)); | ||
images.push_back(chip); | ||
} | ||
} | ||
|
||
if (feats.size() == 0) | ||
{ | ||
cerr << "No non-ignored object boxes found in the XML dataset. You can't cluster an empty dataset." << endl; | ||
return EXIT_FAILURE; | ||
} | ||
|
||
cout << "\nClustering objects..." << endl; | ||
std::vector<assignment> assignments = angular_cluster(feats, num_clusters); | ||
|
||
|
||
// Now output each cluster to disk as an XML file. | ||
for (unsigned long c = 0; c < num_clusters; ++c) | ||
{ | ||
// We are going to accumulate all the image metadata for cluster c. We put it | ||
// into idata so we can sort the images such that images with central chips | ||
// come before less central chips. The idea being to get the good chips to | ||
// show up first in the listing, making it easy to manually remove bad ones if | ||
// that is desired. | ||
std::vector<std::pair<double,image_dataset_metadata::image> > idata(data.images.size()); | ||
unsigned long idx = 0; | ||
for (unsigned long i = 0; i < data.images.size(); ++i) | ||
{ | ||
if (data.images[i].boxes.size() == 0) | ||
continue; | ||
idata[i].first = std::numeric_limits<double>::infinity(); | ||
idata[i].second.filename = data.images[i].filename; | ||
for (unsigned long j = 0; j < data.images[i].boxes.size(); ++j) | ||
{ | ||
idata[i].second.boxes.push_back(data.images[i].boxes[j]); | ||
|
||
if (data.images[i].boxes[j].ignore) | ||
continue; | ||
|
||
// If this box goes into cluster c then update the score for the whole | ||
// image based on this boxes' score. Otherwise, mark the box as | ||
// ignored. | ||
if (assignments[idx].c == c) | ||
idata[i].first = std::min(idata[i].first, assignments[idx].dist); | ||
else | ||
idata[i].second.boxes.back().ignore = true; | ||
|
||
++idx; | ||
} | ||
} | ||
|
||
// now save idata to an xml file. | ||
std::sort(idata.begin(), idata.end(), compare_first); | ||
image_dataset_metadata::dataset cdata; | ||
cdata.comment = data.comment + "\n\n This file contains objects which were clustered into group " + | ||
cast_to_string(c+1) + " of " + cast_to_string(num_clusters) + " groups with a chip size of " + | ||
cast_to_string(chip_size) + " by imglab."; | ||
cdata.name = data.name; | ||
for (unsigned long i = 0; i < idata.size(); ++i) | ||
{ | ||
// if this image has non-ignored boxes in it then include it in the output. | ||
if (idata[i].first != std::numeric_limits<double>::infinity()) | ||
cdata.images.push_back(idata[i].second); | ||
} | ||
|
||
string outfile = "cluster_"+pad_int_with_zeros(c+1, 3) + ".xml"; | ||
cout << "Saving " << outfile << endl; | ||
save_image_dataset_metadata(cdata, outfile); | ||
} | ||
|
||
// Now output each cluster to disk as a big tiled jpeg file. Sort everything so, just | ||
// like in the xml file above, the best objects come first in the tiling. | ||
std::sort(assignments.begin(), assignments.end()); | ||
for (unsigned long c = 0; c < num_clusters; ++c) | ||
{ | ||
dlib::array<array2d<rgb_pixel> > temp; | ||
for (unsigned long i = 0; i < assignments.size(); ++i) | ||
{ | ||
if (assignments[i].c == c) | ||
temp.push_back(images[assignments[i].idx]); | ||
} | ||
|
||
string outfile = "cluster_"+pad_int_with_zeros(c+1, 3) + ".jpg"; | ||
cout << "Saving " << outfile << endl; | ||
save_jpeg(tile_images(temp), outfile); | ||
} | ||
|
||
|
||
return EXIT_SUCCESS; | ||
} | ||
|
||
// ---------------------------------------------------------------------------------------- | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,11 @@ | ||
// Copyright (C) 2015 Davis E. King (davis@dlib.net) | ||
// License: Boost Software License See LICENSE.txt for the full license. | ||
#ifndef DLIB_IMGLAB_ClUSTER_H_ | ||
#define DLIB_IMGLAB_ClUSTER_H_ | ||
|
||
#include <dlib/cmd_line_parser.h> | ||
|
||
int cluster_dataset(const dlib::command_line_parser& parser); | ||
|
||
#endif //DLIB_IMGLAB_ClUSTER_H_ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters