Skip to content

d0t451/d0fractal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

d0fractal

绘制分形图像

Mandelbrot分形图像

根据Mandelbrot集绘制分形图像。Mandelbrot集由一个复变函数f(z) = z2 + c生成,其中c为当前坐标点,z从0开始迭代。

Draw fractal image using Mandelbrot set. The Mandelbrot set is generated by a complex function f(z) = z2 + c, where c is current coordinate point, and z iterates from 0.

Julia分形图像

根据Julia集绘制分形图像。Julia集由一个复变函数f(z) = z2 + c生成,其中c为常数,z从当前坐标点开始迭代。

Draw fractal images using Julia set. The Julia set is generated by a complex function f(z) = z2 + c, where c is a constant, and z iterates from current coordinate point.

c = (0.34-0.05i)

c = (-0.52+0.62i)

c = (-0.54-0.5255i)

c = (-0.55+0.64i)

c = (0.338+0.489i)

c = (0.365-0.37i)

c = (0.3593+0.5103i)

c = (0.42413+0.20753i)

c = -1.38

c = 1i

Koch曲线分形图像

一个边长为1的等边三角形,取每边中间的三分之一,接上去一个形状完全相似的但边长为其三分之一的三角形,结果是一个六角形。取六角形的每个边做同样的变换,即在中间三分之一接上更小的三角形,以此重复,直至无穷。

The Koch snowflake can be constructed by starting with an equilateral triangle, then recursively altering each line segment as follows:

  1. divide the line segment into three segments of equal length.
  2. draw an equilateral triangle that has the middle segment from step 1 as its base and points outward.
  3. remove the line segment that is the base of the triangle from step 2.

谢尔宾斯基地毯分形图像

将一个实心正方形划分为的9个小正方形,去掉中间的小正方形,再对余下的小正方形重复这一操作便能得到谢尔宾斯基地毯。

Divide a solid square into 9 small squares, remove the middle square, and repeat the operation for remaining small squares to get the Sierpinski carpet.

About

绘制分形图像,draw fractal images

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages