Skip to content

cyrusbond/Face-Recognition-Door-Lock-with-AWS-Rekognition-Raspberry-Pi3

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Face-Recognition-Door-Lock-with-AWS-Rekognition-Raspberry-Pi3

Face Recognition Door Lock with AWS Rekognition & Raspberry Pi3 it works with RPI3 using the camera module

forthebadge made-with-python Python 3.6 PyPI license

Video

IMAGE ALT TEXT HERE

Hardware Requirements:

1.Raspberry Pi (Any Version Will Work)

2.Raspberry Pi Camera (Also USB Webcam Can Be Used)

3.Push Button

4.Electric Door Lock

Software Dependencies:

Python2

Boto3

pip install boto3

Python3

Boto3

pip3 install boto3

Step 1 : Create a AWS S3 Bucket in that bucket create folders with the name of the students and add their images atleat 5-10

Step 2 : Go to IAM and create a new user and set access type to Programmatic access

Step 3 : Set permissions for S3 and Rekoognition to full access

Step 4 : Complete the process you will get Accesss Key ID & Secret Access Key Copy both and add it in train.py and main.py

train.py

s3_client = boto3.client(
    's3',
    aws_access_key_id='',# add the aws access key
    aws_secret_access_key=''# add the aws secret access key
    
)

collectionId='' #collection name

rek_client=boto3.client('rekognition',
                            aws_access_key_id='',# add the aws access key
                            aws_secret_access_key='',# add the aws secret access key
                            region_name='',)# add the region here

recognition.py

rek_client=boto3.client('rekognition',
                        aws_access_key_id='',# add the aws access key
                        aws_secret_access_key='',# add the aws secret access key
                        region_name='ap-south-1',)# add the region here

Step 5 : Add the S3 Bucket Name & Folder to save the images on pi

Both files

bucket = '' #S3 bucket name

recognition.py

directory = '' #folder name on your raspberry pi

Run

First Run Train.py File on RPI

python train.py

Run main.py File on RPI ,connect the booton with GPIO 26

python main.py

License & Copyright

© Arbaz Khan

Licensed under the MIT License

About

Face Recognitio nDoor Lock with AWS Rekognition Raspberry Pi3

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%