-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
254 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from matplotlib.ticker import FormatStrFormatter | ||
from gp_utils import BoTorchGP | ||
from temperature_env import MultiObjectiveNormalDropletFunctionEnv | ||
from snake import MultiObjectiveSnAKe | ||
from bayes_op import TruncatedExpectedImprovement, EIperUnitCost, MultiObjectiveEIpu, MultiObjectiveTrEI | ||
from functions import MultiSchekel2D, YpacaraiLake, YpacaraiLakeSingleObjective | ||
import torch | ||
import os | ||
|
||
|
||
''' | ||
This script creates: | ||
(1) Ypacarai Lake Figure is purpose is set to 'plot' | ||
(2) Runs the experiments if purpose is set to 'experiment' | ||
(3) Analyses the results if purpose is set to 'process_results' | ||
''' | ||
|
||
purpose = 'plot' | ||
cost_change = 3.3 | ||
save_plot = True | ||
|
||
if purpose == 'plot': | ||
|
||
func = YpacaraiLake() | ||
grid_to_search = func.grid_to_search | ||
initial_idx = np.random.random_integers(len(grid_to_search)) | ||
initial_point = grid_to_search[initial_idx, :].numpy().reshape(1, -1) | ||
|
||
env = MultiObjectiveNormalDropletFunctionEnv(func, max_batch_size = 1, budget = 100) | ||
model = MultiObjectiveSnAKe(env, initial_temp = initial_point, max_change = 0.2, exploration_constant = 0, merge_constant = 'lengthscale', objective_weights = [1, 1, 1]) | ||
# model = TruncatedExpectedImprovement(env, initial_temp = initial_point) | ||
model.gp_hyperparams[0] = (0.12, torch.tensor([0.1, 0.1]), 1e-5, 0.5) | ||
model.gp_hyperparams[1] = (0.12, torch.tensor([0.1, 0.1]), 1e-5, 0.8) | ||
model.gp_hyperparams[2] = (0.12, torch.tensor([0.1, 0.1]), 1e-5, 0.5) | ||
|
||
X, Y = model.run_optim(verbose = True) | ||
|
||
grid_len_x = 2006 | ||
grid_len_y = 2825 | ||
|
||
func = MultiSchekel2D(n_optims = [2, 3, 2]) | ||
|
||
x1 = np.linspace(0, 1, grid_len_x) | ||
x2 = np.linspace(0, 1, grid_len_y) | ||
|
||
xv, yv = np.meshgrid(x1, x2) | ||
|
||
zv1 = np.zeros_like(xv) | ||
zv2 = np.zeros_like(xv) | ||
zv3 = np.zeros_like(xv) | ||
|
||
for i in range(grid_len_x): | ||
x = x1[i] * np.ones_like(x2) | ||
y = x2 | ||
|
||
x = x.reshape(-1, 1) | ||
y = np.flip(y.reshape(-1, 1)) | ||
|
||
xy = np.concatenate((x, y), axis = 1) | ||
|
||
y1, y2, y3 = func.query_function(xy) | ||
|
||
zv1[:, i] = y1 | ||
zv2[:, i] = y2 | ||
zv3[:, i] = y3 | ||
|
||
array_lake = np.load('ypacarai_array.npy') | ||
|
||
zv1 = zv1 * (array_lake - 1) * (-1) | ||
zv2 = zv2 * (array_lake - 1) * (-1) | ||
zv3 = zv3 * (array_lake - 1) * (-1) | ||
|
||
fig, ax = plt.subplots(nrows = 1, ncols = 3) | ||
fig.set_figheight(6) | ||
fig.set_figwidth(18) | ||
|
||
ax[0].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) | ||
ax[0].xaxis.set_major_formatter(FormatStrFormatter('%.1f')) | ||
ax[1].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) | ||
ax[1].xaxis.set_major_formatter(FormatStrFormatter('%.1f')) | ||
ax[2].yaxis.set_major_formatter(FormatStrFormatter('%.1f')) | ||
ax[2].xaxis.set_major_formatter(FormatStrFormatter('%.1f')) | ||
|
||
ax[0].tick_params(axis='both', labelsize=15) | ||
ax[1].tick_params(axis='x', labelsize=15) | ||
ax[1].tick_params(axis='y', labelsize=0) | ||
ax[2].tick_params(axis='x', labelsize=15) | ||
ax[2].tick_params(axis='y', labelsize=0) | ||
|
||
contour_obj1 = ax[0].contourf(x1, np.flip(x2), zv1, levels = 50) | ||
cbar1 = fig.colorbar(contour_obj1, ax = ax[0], format = FormatStrFormatter('%.1f')) | ||
cbar1.ax.tick_params(labelsize = 15) | ||
ax[0].set_title('Objective 1', fontsize = 20) | ||
ax[0].set_xlabel('x1', fontsize = 15) | ||
ax[0].set_ylabel('x2', fontsize = 15) | ||
ax[0].scatter(X[:, 0], X[:, 1], color = 'k') | ||
ax[0].plot(X[:, 0], X[:, 1], color = 'k', linewidth = 0.5, markersize = 0.001, linestyle = '--') | ||
contour_obj2 = ax[1].contourf(x1, np.flip(x2), zv2, levels = 50, cmap = 'RdBu_r') | ||
cbar2 = fig.colorbar(contour_obj2, ax = ax[1]) | ||
cbar2.ax.tick_params(labelsize = 15) | ||
ax[1].set_title('Objective 2', fontsize = 20) | ||
ax[1].set_xlabel('x1', fontsize = 15) | ||
ax[1].scatter(X[:, 0], X[:, 1], color = 'k') | ||
ax[1].plot(X[:, 0], X[:, 1], color = 'k', linewidth = 0.5, markersize = 0.001, linestyle = '--') | ||
contour_obj3 = ax[2].contourf(x1, np.flip(x2), zv3, levels = 50, cmap = 'ocean') | ||
cbar3 = fig.colorbar(contour_obj3, ax = ax[2]) | ||
cbar3.ax.tick_params(labelsize = 15) | ||
ax[2].set_title('Objective 3', fontsize = 20) | ||
ax[2].set_xlabel('x1', fontsize = 15) | ||
ax[2].scatter(X[:, 0], X[:, 1], color = 'k') | ||
ax[2].plot(X[:, 0], X[:, 1], color = 'k', linewidth = 0.5, markersize = 0.001, linestyle = '--') | ||
|
||
if save_plot == True: | ||
fig_name = 'YpacaraiExampleRun' | ||
save_name = fig_name + '.pdf' | ||
fig.savefig(save_name, bbox_inches = 'tight') | ||
|
||
plt.show() | ||
|
||
if purpose == 'experiment': | ||
for method in ['TrEI', 'EIpu', 'SnAKe']: | ||
# for method in ['TrEI', 'EIpu']: | ||
for obj_number in [0, 1, 2, 3]: | ||
if obj_number == 0: | ||
func = YpacaraiLake() | ||
else: | ||
func = YpacaraiLakeSingleObjective(obj_to_query = obj_number - 1) | ||
|
||
for run_num in range(1, 11): | ||
# set random seed | ||
seed = run_num * 505 | ||
np.random.seed(seed) | ||
torch.manual_seed(seed) | ||
grid_to_search = func.grid_to_search | ||
initial_idx = np.random.random_integers(len(grid_to_search)) | ||
initial_point = grid_to_search[initial_idx, :].numpy().reshape(1, -1) | ||
|
||
if method == 'SnAKe': | ||
budget = 200 | ||
else: | ||
budget = 200 | ||
|
||
env = MultiObjectiveNormalDropletFunctionEnv(func, max_batch_size = 1, budget = budget) | ||
if method == 'SnAKe': | ||
model = MultiObjectiveSnAKe(env, initial_temp = initial_point, exploration_constant = 0, merge_constant = 'lengthscale', objective_weights = [1, 1, 1]) | ||
elif method == 'TrEI': | ||
model = MultiObjectiveTrEI(env, initial_temp = initial_point, cost_switch = cost_change) | ||
elif method == 'EIpu': | ||
model = MultiObjectiveEIpu(env, initial_temp = initial_point, cost_switch = cost_change) | ||
|
||
if obj_number == 0: | ||
model.gp_hyperparams[0] = (0.12, torch.tensor([0.1, 0.1]), 1e-5, 0.5) | ||
model.gp_hyperparams[1] = (0.12, torch.tensor([0.1, 0.1]), 1e-5, 0.8) | ||
model.gp_hyperparams[2] = (0.12, torch.tensor([0.1, 0.1]), 1e-5, 0.5) | ||
else: | ||
model.gp_hyperparams[0] = (0.12, torch.tensor([0.1, 0.1]), 1e-5, 0.5) | ||
|
||
X, Y = model.run_optim(verbose = True) | ||
|
||
if method in ['TrEI', 'EIpu']: | ||
folder_inputs = 'ypacarai_results/' + f'objective{obj_number}' + str(cost_change) + '-' + method + '/inputs/' | ||
folder_outputs = 'ypacarai_results/' + f'objective{obj_number}' + str(cost_change) + '-' + method + '/outputs/' | ||
file_name = f'run_{run_num}' | ||
else: | ||
folder_inputs = 'ypacarai_results/' + f'objective{obj_number}' + method + '/inputs/' | ||
folder_outputs = 'ypacarai_results/' + f'objective{obj_number}' + method + '/outputs/' | ||
file_name = f'run_{run_num}' | ||
# create directories if they exist | ||
os.makedirs(folder_inputs, exist_ok = True) | ||
os.makedirs(folder_outputs, exist_ok = True) | ||
# save the following ones | ||
np.save(folder_inputs + file_name, X) | ||
np.save(folder_outputs + file_name, np.array(Y)) | ||
|
||
if purpose == 'process_results': | ||
|
||
final_cost = 10 | ||
mid_cost = 3.3 | ||
mse_grid = np.load('mse_ypacarai_grid.npy') | ||
func = YpacaraiLake() | ||
for obj_number in [0, 1, 2, 3]: | ||
for method in ['SnAKe', 'EIpu', 'TrEI']: | ||
Regret1 = [] | ||
Regret2 = [] | ||
Regret3 = [] | ||
Regret4 = [] | ||
Costs = [] | ||
num_of_samples = [] | ||
for run_num in range(1, 11): | ||
if method in ['TrEI', 'EIpu']: | ||
folder_inputs = 'ypacarai_results/' + f'objective{obj_number}' + str(cost_change) + '-' + method + '/inputs/' | ||
folder_outputs = 'ypacarai_results/' + f'objective{obj_number}' + str(cost_change) + '-' + method + '/outputs/' | ||
file_name = f'run_{run_num}.npy' | ||
else: | ||
folder_inputs = 'ypacarai_results/' + f'objective{obj_number}' + method + '/inputs/' | ||
folder_outputs = 'ypacarai_results/' + f'objective{obj_number}' + method + '/outputs/' | ||
file_name = f'run_{run_num}.npy' | ||
|
||
X = np.load(folder_inputs + file_name) | ||
Y = np.load(folder_outputs + file_name) | ||
|
||
C = 0 | ||
for i in range(len(X) - 1): | ||
C = C + np.linalg.norm(X[i+1] - X[i]) | ||
if C > final_cost: | ||
break | ||
|
||
|
||
x_optim1 = np.array([0.20916560292243958, 0.6638457775115967]) | ||
x_optim2 = np.array([0.8908343315124512, 0.20615419745445251]) | ||
x_optim3 = np.array([0.4012976884841919, 00.9626452326774597]) | ||
x_optim4 = np.array([0.4275386929512024, 0.30612045526504517]) | ||
optim_list = [x_optim1, x_optim2, x_optim3, x_optim4] | ||
|
||
regrets = [] | ||
for j, optim in enumerate(optim_list): | ||
distances = np.linalg.norm(X[:i+1, :] - optim, axis = 1) | ||
closest_point = np.argmin(distances) | ||
if j < 2: | ||
y_star, _, _ = func.query_function(optim.reshape(1, -1)) | ||
y_best, _, _ = func.query_function(X[closest_point, :].reshape(1, -1)) | ||
elif j < 3: | ||
_, y_star, _ = func.query_function(optim.reshape(1, -1)) | ||
_, y_best, _ = func.query_function(X[closest_point, :].reshape(1, -1)) | ||
else: | ||
_, _, y_star = func.query_function(optim.reshape(1, -1)) | ||
_, _, y_best = func.query_function(X[closest_point, :].reshape(1, -1)) | ||
regrets.append(y_star - y_best) | ||
|
||
Regret1.append(regrets[0]) | ||
Regret2.append(regrets[1]) | ||
Regret3.append(regrets[2]) | ||
Regret4.append(regrets[3]) | ||
Costs.append(C) | ||
num_of_samples.append(i+1) | ||
|
||
|
||
Regret1 = np.array(Regret1) | ||
Regret2 = np.array(Regret2) | ||
Regret3 = np.array(Regret3) | ||
Regret4 = np.array(Regret4) | ||
|
||
print(method,f'Objective: {obj_number}',' : Reg1 : ', np.mean(Regret1) * 1000) | ||
print(method,f'Objective: {obj_number}',' : Std1 : ', np.std(Regret1) * 1000) | ||
print(method,f'Objective: {obj_number}',' : Reg2 : ', np.mean(Regret2) * 1000) | ||
print(method,f'Objective: {obj_number}',' : Std2 : ', np.std(Regret2) * 1000) | ||
print(method,f'Objective: {obj_number}',' : Reg3 : ', np.mean(Regret3) * 1000) | ||
print(method,f'Objective: {obj_number}',' : Std3 : ', np.std(Regret3) * 1000) | ||
print(method,f'Objective: {obj_number}',' : Reg4 : ', np.mean(Regret4) * 1000) | ||
print(method,f'Objective: {obj_number}',' : Std4 : ', np.std(Regret4) * 1000) | ||
print(method, ' : Cost : ', np.mean(Costs) ) | ||
print(method, ' : Samples : ', np.mean(num_of_samples) ) |