forked from pesser/stable-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' of github.com:pesser/stable-diffusion into main
- Loading branch information
Showing
19 changed files
with
702 additions
and
8 deletions.
There are no files selected for viewing
133 changes: 133 additions & 0 deletions
133
configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-1024-laion-hr.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
model: | ||
base_learning_rate: 1.0e-04 | ||
target: ldm.models.diffusion.ddpm.LatentDiffusion | ||
params: | ||
linear_start: 0.001 | ||
linear_end: 0.015 | ||
num_timesteps_cond: 1 | ||
log_every_t: 200 | ||
timesteps: 1000 | ||
first_stage_key: "jpg" | ||
cond_stage_key: "txt" | ||
image_size: 64 | ||
channels: 16 | ||
cond_stage_trainable: false # Note: different from the one we trained before | ||
conditioning_key: crossattn | ||
monitor: val/loss_simple_ema | ||
scale_factor: 0.22765929 # magic number | ||
|
||
#ckpt_path: "/home/mchorse/stable-diffusion-ckpts/768f16-2022-06-23-pruned.ckpt" | ||
|
||
#scheduler_config: # 10000 warmup steps | ||
# target: ldm.lr_scheduler.LambdaLinearScheduler | ||
# params: | ||
# warm_up_steps: [ 10000 ] | ||
# cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases | ||
# f_start: [ 1.e-6 ] | ||
# f_max: [ 1. ] | ||
# f_min: [ 1. ] | ||
|
||
unet_config: | ||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel | ||
params: | ||
image_size: 64 # not really needed | ||
in_channels: 16 | ||
out_channels: 16 | ||
model_channels: 320 | ||
attention_resolutions: [ 4, 2, 1 ] | ||
num_res_blocks: 2 | ||
channel_mult: [ 1, 2, 4, 4 ] | ||
num_heads: 8 | ||
use_spatial_transformer: True | ||
transformer_depth: 1 | ||
context_dim: 768 | ||
use_checkpoint: True | ||
legacy: False | ||
|
||
first_stage_config: | ||
target: ldm.models.autoencoder.AutoencoderKL | ||
params: | ||
embed_dim: 16 | ||
monitor: val/rec_loss | ||
ddconfig: | ||
double_z: True | ||
z_channels: 16 | ||
resolution: 256 | ||
in_channels: 3 | ||
out_ch: 3 | ||
ch: 128 | ||
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1 | ||
num_res_blocks: 2 | ||
attn_resolutions: [ 16 ] | ||
dropout: 0.0 | ||
lossconfig: | ||
target: torch.nn.Identity | ||
|
||
cond_stage_config: | ||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder | ||
|
||
|
||
data: | ||
target: ldm.data.laion.WebDataModuleFromConfig | ||
params: | ||
tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/" | ||
batch_size: 3 | ||
num_workers: 4 | ||
multinode: True | ||
train: | ||
shards: '{00000..17279}.tar -' | ||
shuffle: 10000 | ||
image_key: jpg | ||
image_transforms: | ||
- target: torchvision.transforms.Resize | ||
params: | ||
size: 1024 | ||
interpolation: 3 | ||
- target: torchvision.transforms.RandomCrop | ||
params: | ||
size: 1024 | ||
|
||
# NOTE use enough shards to avoid empty validation loops in workers | ||
validation: | ||
shards: '{17280..17535}.tar -' | ||
shuffle: 0 | ||
image_key: jpg | ||
image_transforms: | ||
- target: torchvision.transforms.Resize | ||
params: | ||
size: 1024 | ||
interpolation: 3 | ||
- target: torchvision.transforms.CenterCrop | ||
params: | ||
size: 1024 | ||
|
||
|
||
lightning: | ||
find_unused_parameters: False | ||
|
||
modelcheckpoint: | ||
params: | ||
every_n_train_steps: 2000 | ||
|
||
callbacks: | ||
image_logger: | ||
target: main.ImageLogger | ||
params: | ||
batch_frequency: 2000 | ||
max_images: 2 | ||
increase_log_steps: False | ||
log_first_step: False | ||
log_images_kwargs: | ||
use_ema_scope: False | ||
inpaint: False | ||
plot_progressive_rows: False | ||
plot_diffusion_rows: False | ||
N: 2 | ||
unconditional_guidance_scale: 5.0 | ||
unconditional_guidance_label: [""] | ||
|
||
trainer: | ||
benchmark: True | ||
val_check_interval: 5000000 | ||
num_sanity_val_steps: 0 | ||
accumulate_grad_batches: 4 |
137 changes: 137 additions & 0 deletions
137
configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
model: | ||
base_learning_rate: 8.e-05 | ||
target: ldm.models.diffusion.ddpm.LatentDiffusion | ||
params: | ||
linear_start: 0.00085 | ||
linear_end: 0.0120 | ||
num_timesteps_cond: 1 | ||
log_every_t: 200 | ||
timesteps: 1000 | ||
first_stage_key: "jpg" | ||
cond_stage_key: "txt" | ||
image_size: 32 | ||
channels: 4 | ||
cond_stage_trainable: false # Note: different from the one we trained before | ||
conditioning_key: crossattn | ||
monitor: val/loss_simple_ema | ||
scale_factor: 0.18215 | ||
|
||
scheduler_config: # 10000 warmup steps | ||
target: ldm.lr_scheduler.LambdaLinearScheduler | ||
params: | ||
warm_up_steps: [ 10000 ] | ||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases | ||
f_start: [ 1.e-6 ] | ||
f_max: [ 1. ] | ||
f_min: [ 1. ] | ||
|
||
unet_config: | ||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel | ||
params: | ||
image_size: 32 # unused | ||
in_channels: 4 | ||
out_channels: 4 | ||
model_channels: 416 | ||
attention_resolutions: [ 4, 2, 1 ] | ||
num_res_blocks: [ 2, 2, 2, 2 ] | ||
channel_mult: [ 1, 2, 4, 4 ] | ||
disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true | ||
num_heads: 8 | ||
use_spatial_transformer: True | ||
transformer_depth: 1 | ||
context_dim: 768 | ||
use_checkpoint: True | ||
legacy: False | ||
|
||
first_stage_config: | ||
target: ldm.models.autoencoder.AutoencoderKL | ||
params: | ||
embed_dim: 4 | ||
monitor: val/rec_loss | ||
ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f8/model.ckpt" | ||
ddconfig: | ||
double_z: true | ||
z_channels: 4 | ||
resolution: 256 | ||
in_channels: 3 | ||
out_ch: 3 | ||
ch: 128 | ||
ch_mult: | ||
- 1 | ||
- 2 | ||
- 4 | ||
- 4 | ||
num_res_blocks: 2 | ||
attn_resolutions: [] | ||
dropout: 0.0 | ||
lossconfig: | ||
target: torch.nn.Identity | ||
|
||
cond_stage_config: | ||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder | ||
|
||
|
||
data: | ||
target: ldm.data.laion.WebDataModuleFromConfig | ||
params: | ||
tar_base: "__improvedaesthetic__" | ||
batch_size: 8 | ||
num_workers: 4 | ||
multinode: True | ||
train: | ||
shards: '{00000..17279}.tar -' | ||
shuffle: 10000 | ||
image_key: jpg | ||
image_transforms: | ||
- target: torchvision.transforms.Resize | ||
params: | ||
size: 256 | ||
interpolation: 3 | ||
- target: torchvision.transforms.RandomCrop | ||
params: | ||
size: 256 | ||
|
||
# # NOTE use enough shards to avoid empty validation loops in workers | ||
validation: | ||
shards: '{17280..17535}.tar -' | ||
shuffle: 0 | ||
image_key: jpg | ||
image_transforms: | ||
- target: torchvision.transforms.Resize | ||
params: | ||
size: 256 | ||
interpolation: 3 | ||
- target: torchvision.transforms.CenterCrop | ||
params: | ||
size: 256 | ||
|
||
|
||
lightning: | ||
find_unused_parameters: false | ||
modelcheckpoint: | ||
params: | ||
every_n_train_steps: 5000 | ||
callbacks: | ||
image_logger: | ||
target: main.ImageLogger | ||
params: | ||
disabled: True | ||
batch_frequency: 2500 | ||
max_images: 4 | ||
increase_log_steps: False | ||
log_first_step: False | ||
log_images_kwargs: | ||
use_ema_scope: False | ||
inpaint: False | ||
plot_progressive_rows: False | ||
plot_diffusion_rows: False | ||
N: 4 | ||
unconditional_guidance_scale: 3.0 | ||
unconditional_guidance_label: [""] | ||
|
||
trainer: | ||
#replace_sampler_ddp: False | ||
benchmark: True | ||
val_check_interval: 5000000 # really sorry | ||
num_sanity_val_steps: 0 | ||
accumulate_grad_batches: 1 |
Oops, something went wrong.