Repository for Commissioning studies in the BTV POG based on (custom) nanoAOD samples Detailed documentation in btv-wiki
❗ suggested to install under bash
environment
# only first time, including submodules
git clone --recursive git@github.com:cms-btv-pog/BTVNanoCommissioning.git
# activate enviroment once you have coffea framework
conda activate btv_coffea
# Or if you are using lxplus, can use exist framework
conda activate /eos/user/m/milee/miniconda3/envs/btv_coffea
# when modifying the framework
pip install -e .
For installing Micromamba, see [here]
wget -L micro.mamba.pm/install.sh
# Run and follow instructions on screen
bash install.sh
NOTE: always make sure that conda, python, and pip point to local micromamba installation (which conda
etc.).
You can simply create the environment through the existing test_env.yml
under your micromamba environment using micromamba, and activate it
micromamba env create -f test_env.yml
micromamba activate btv_coffea
Once the environment is set up, compile the python package:
pip install -e .
pip install -e .[dev] # for developer
See https://coffeateam.github.io/coffea/installation.html
Now you can use various shell scripts to directly launch the runner scripts with predefined scaleouts. You can modify and customize the scripts inside the scripts/submit
directory according to your needs. Each script takes arguments from arguments.txt
directory, that has 4 inputs i.e. - Campaign name
, year
, executor
and luminosity
. To launch any workflow, for example W+c
./ctag_wc.sh arguments.txt
Additional scripts are provided to make a directory structure that creates directories locally and copies them in the remote BTV eos area https://btvweb.web.cern.ch/Commissioning/dataMC/. Finally plots can be directly monitored in the webpage.
Each workflow can be a separate "processor" file, creating the mapping from NanoAOD to
the histograms we need. Workflow processors can be passed to the runner.py
script
along with the fileset these should run over. Multiple executors can be chosen
(for now iterative - one by one, uproot/futures - multiprocessing and dask-slurm).
To test a small set of files to see whether the workflows run smoothly, run:
python runner.py --workflow ttsemilep_sf --json metadata/test_bta_run3.json --campaign Summer23 --year 2023
More options for runner.py
more options
--wf {validation,ttcom,ttdilep_sf,ttsemilep_sf,emctag_ttdilep_sf,ctag_ttdilep_sf,ectag_ttdilep_sf,ctag_ttsemilep_sf,ectag_ttsemilep_sf,ctag_Wc_sf,ectag_Wc_sf,ctag_DY_sf,ectag_DY_sf,BTA,BTA_addPFMuons,BTA_addAllTracks,BTA_ttbar}, --workflow {validation,ttcom,ttdilep_sf,ttsemilep_sf,emctag_ttdilep_sf,ctag_ttdilep_sf,ectag_ttdilep_sf,ctag_ttsemilep_sf,ectag_ttsemilep_sf,ctag_Wc_sf,ectag_Wc_sf,ctag_DY_sf,ectag_DY_sf,BTA,BTA_addPFMuons,BTA_addAllTracks,BTA_ttbar}
Which processor to run
-o OUTPUT, --output OUTPUT
Output histogram filename (default: hists.coffea)
--samples SAMPLEJSON, --json SAMPLEJSON
JSON file containing dataset and file locations
(default: dummy_samples.json)
--year YEAR Year
--campaign CAMPAIGN Dataset campaign, change the corresponding correction
files{ "Rereco17_94X","Winter22Run3","Summer23","Summer23BPix","Summer22","Summer22EE","2018_UL","2017_UL","2016preVFP_UL","2016postVFP_UL","prompt_dataMC"}
--isSyst Run with systematics, all, weight_only(no JERC uncertainties included),JERC_split, None(not extract)
--isArray Output root files
--noHist Not save histogram coffea files
--overwrite Overwrite existing files
--executor {iterative,futures,parsl/slurm,parsl/condor,parsl/condor/naf_lite,dask/condor,dask/condor/brux,dask/slurm,dask/lpc,dask/lxplus,dask/casa}
The type of executor to use (default: futures). Other options can be implemented. For
example see https://parsl.readthedocs.io/en/stable/userguide/configuring.html-
`parsl/slurm` - tested at DESY/Maxwell- `parsl/condor` - tested at DESY, RWTH-
`parsl/condor/naf_lite` - tested at DESY- `dask/condor/brux` - tested at BRUX (Brown U)-
`dask/slurm` - tested at DESY/Maxwell- `dask/condor` - tested at DESY, RWTH- `dask/lpc` -
custom lpc/condor setup (due to write access restrictions)- `dask/lxplus` - custom
lxplus/condor setup (due to port restrictions)
-j WORKERS, --workers WORKERS
Number of workers (cores/threads) to use for multi- worker executors (e.g. futures or condor) (default:
3)
-s SCALEOUT, --scaleout SCALEOUT
Number of nodes to scale out to if using slurm/condor.
Total number of concurrent threads is ``workers x
scaleout`` (default: 6)
--memory MEMORY Memory used in jobs (in GB) ``(default: 4GB)
--disk DISK Disk used in jobs ``(default: 4GB)
--voms VOMS Path to voms proxy, made accessible to worker nodes.
By default a copy will be made to $HOME.
--chunk N Number of events per process chunk
--retries N Number of retries for coffea processor
--fsize FSIZE (Specific for dask/lxplus file splitting, default: 50) Numbers of files processed per
dask-worker
--index INDEX (Specific for dask/lxplus file splitting, default: 0,0) Format:
$dict_index_start,$file_index_start,$dict_index_stop,$file_index_stop. Stop indices are
optional. $dict_index refers to the index, splitted $dict_index and $file_index with ','
$dict_index refers to the sample dictionary of the samples json file. $file_index refers to the N-th batch of files per dask-worker, with its size being defined by the option --index. The job will start (stop) submission from (with) the corresponding indices.
--validate Do not process, just check all files are accessible
--skipbadfiles Skip bad files.
--only ONLY Only process specific dataset or file
--limit N Limit to the first N files of each dataset in sample
JSON
--max N Max number of chunks to run in total
-
Is the
.json
file ready? If not, create it following the instructions in the Make the json files section. Please use the correct naming scheme -
Add the
lumiMask
, correction files (SFs, pileup weight), and JER, JEC files under the dict entry inutils/AK4_parameters.py
. See details in Correction files configurations -
If the JERC file
jec_compiled.pkl.gz
is missing in thedata/JME/${campaign}
directory, create it through Create compiled JERC file -
If selections and output histogram/arrays need to be changed, modify the dedicated
workflows
-
Run the workflow with dedicated input and campaign name. Example commands for Run 3 can be found here. For first usage, the JERC file needs to be recompiled first, see Create compiled JERC file. You can also specify
--isArray
to store the skimmed root files -
Fetch the failed files to obtain events that have been processed and events that have to be resubmitted using
scripts/dump_processed.py
. Check the luminosity of the processed dataset used for the plotting script and re-run failed jobs if needed (details in get procssed info) -
Once you obtain the
.coffea
file(s), you can make plots using the plotting scripts, if the xsection for your sample is missing, please add it tosrc/BTVNanoCommissioning/helpers/xsection.py
Check out notes for developer for more info!
After a small test, you can run the full campaign for a dedicated phase space, separately for data and for MC.
python runner.py --workflow $WF --json metadata/$JSON --campaign $CAMPAIGN --year $YEAR (--executor ${scaleout_site})
details
- Dileptonic ttbar phase space : check performance for btag SFs, emu channel
python runner.py --workflow ttdiilep_sf --json metadata/data_Summer23_2023_em_BTV_Run3_2023_Comm_MINIAODv4_NanoV12.json --campaign Summer23 --year 2023 (--executor ${scaleout_site})
- Semileptonic ttbar phase space : check performance for btag SFs, muon channel
python runner.py --workflow ttsemilep_sf --json metadata/data_Summer23_2023_mu_BTV_Run3_2023_Comm_MINIAODv4_NanoV12.json --campaign Summer23 --year 2023 (--executor ${scaleout_site})
details
- Dileptonic ttbar phase space : check performance for charm SFs, bjets enriched SFs, muon channel
python runner.py --workflow ctag_ttdilep_sf --json metadata/data_Summer23_2023_mu_BTV_Run3_2023_Comm_MINIAODv4_NanoV12.json --campaign Summer23 --year 2023(--executor ${scaleout_site})
- Semileptonic ttbar phase space : check performance for charm SFs, bjets enriched SFs, muon channel
python runner.py --workflow ctag_ttsemilep_sf --json metadata/data_Summer23_2023_mu_BTV_Run3_2023_Comm_MINIAODv4_NanoV12.json --campaign Summer23 --year 2023(--executor ${scaleout_site})
- W+c phase space : check performance for charm SFs, cjets enriched SFs, muon channel
python runner.py --workflow ctag_Wc_sf --json metadata/data_Summer23_2023_mu_BTV_Run3_2023_Comm_MINIAODv4_NanoV12.json --campaign Summer23 --year 2023(--executor ${scaleout_site})
- DY phase space : check performance for charm SFs, light jets enriched SFs, muon channel
python runner.py --workflow ctag_DY_sf --json metadata/data_Summer23_2023_mu_BTV_Run3_2023_Comm_MINIAODv4_NanoV12.json --campaign Summer23 --year 2023(--executor ${scaleout_site})
details
Only basic jet selections(PUID, ID, pT,
python runner.py --workflow valid --json metadata/$json file
Based on Congqiao's development to produce BTA ntuples based on PFNano.
❗ Only the newest version BTV_Run3_2023_Comm_MINIAODv4 ntuples work. Example files are given in this json. Optimize the chunksize(--chunk
) in terms of the memory usage. This depends on sample, if the sample has huge jet collection/b-c hardons. The more info you store, the more memory you need. I would suggest to test with iterative
to estimate the size.
details
Run with the nominal BTA
workflow to include the basic event variables, jet observables, and GEN-level quarks, hadrons, leptons, and V0 variables.
python runner.py --wf BTA --json metadata/test_bta_run3.json --campaign Summer22EE --isJERC
Run with the BTA_addPFMuons
workflow to additionally include the PFMuon
and TrkInc
collection, used by the b-tag SF derivation with the QCD(μ) methods.
python runner.py --wf BTA_addPFMuons --json metadata/test_bta_run3.json --campaign Summer22EE --isJERC
Run with the BTA_addAllTracks
workflow to additionally include the Tracks
collection, used by the JP variable calibration.
python runner.py --wf BTA_addAllTracks --json metadata/test_bta_run3.json --campaign Summer22EE --isJERC
Scale out can be notoriously tricky between different sites. Coffea's integration of slurm
and dask
makes this quite a bit easier and for some sites the ``native'' implementation is sufficient, e.g Condor@DESY.
However, some sites have certain restrictions for various reasons, in particular Condor @CERN and @FNAL. The scaleout scheme is named as follows: $cluster_schedule_system/scheduler/site
. The existing sites are documented in sites configuration while standalone condor submission is possible and strongly suggested when working on lxplus.
Memory usage is also useful to adapt to cluster. Check the memory by calling memory_usage_psutil()
from helpers.func.memory_usage_psutil
to optimize job size. Example with ectag_Wc_sf
summarized below.
details
Type | Array+Hist | Hist only | Array Only |
---|---|---|---|
DoubleMuon (BTA,BTV_Comm_v2) | 1243MB | 848MB | 1249MB |
DoubleMuon (PFCands, BTV_Comm_v1) | 1650MB | 1274MB | 1632MB |
DoubleMuon (Nano_v11) | 1183MB | 630MB | 1180MB |
WJets_inc (BTA,BTV_Comm_v2) | 1243MB | 848MB | 1249MB |
WJets_inc (PFCands, BTV_Comm_v1) | 1650MB | 1274MB | 1632MB |
WJets_inc (Nano_v11) | 1183MB | 630MB | 1180MB |
details
Condor@FNAL (CMSLPC)
Follow setup instructions at https://github.com/CoffeaTeam/lpcjobqueue. After starting the singularity container run with
python runner.py --wf ttcom --executor dask/lpc
Condor@CERN (lxplus)
Only one port is available per node, so its possible one has to try different nodes until hitting
one with 8786
being open. Other than that, no additional configurations should be necessary.
python runner.py --wf ttcom --executor dask/lxplus
jobs automatically split to 50 files per jobs to avoid job failure due to crowded cluster on lxplus with the naming scheme hist_$workflow_$json_$dictindex_$fileindex.coffea
. The .coffea
files can be then combined at plotting level
❗ The optimal scaleout options on lxplus are -s 50 --chunk 50000
To deal with unstable condor cluster and dask worker on lxplus, you can resubmit failure jobs via --index $dictindex,$fileindex
option. $dictindex
refers to the index in the .json dict
, $fileindex
refers to the index of the file list split to 50 files per dask-worker. The total number of files of each dict can be computed by math.ceil(len($filelist)/50)
The job will start from the corresponding indices.
Coffea-casa (Nebraska AF)
Coffea-casa is a JupyterHub based analysis-facility hosted at Nebraska. For more information and setup instuctions see https://coffea-casa.readthedocs.io/en/latest/cc_user.html
After setting up and checking out this repository (either via the online terminal or git widget utility run with
python runner.py --wf ttcom --executor dask/casa
Authentication is handled automatically via login auth token instead of a proxy. File paths need to replace xrootd redirector with "xcache", runner.py
does this automatically.
Condor@DESY
python runner.py --wf ttcom --executor dask/condor(parsl/condor)
Maxwell@DESY
python runner.py --wf ttcom --executor parsl/slurm
❗ ❗ ❗ Strongly suggest to use this in lxplus ❗ ❗ ❗ You have the option to run the framework through "standalone condor jobs", bypassing the native coffea-supported job submission system. Within each job you submit, a standalone script will execute the following on the worker node:
- Set up a minimal required Python environment.
- Retrieve the BTVNanoCommissioning repository, either from a git link or transferred locally.
- Launch the
python runner.py ...
command to execute the coffea framework in the iterative executor mode.
This utility is currently adapted for the lxplus and cmsconnect condor systems. To generate jobs for launching, replace python runner.py
with python condor/submitter.py
, append the existing arguments, and add the following arguments in addition:
--jobName
: Specify the desired condor job name. A dedicated folder will be generated, including all submission-related files.--outputXrootdDir
: Indicate the XRootD directory's path (starting withroot://
) where the produced .coffea (and .root) files from each worker node will be transferred to.--condorFileSize
: Define the number of files to process per condor job (default is 50). The input file list will be divided based on this count.--remoteRepo
(optional, but recommended): Specify the path and branch of the remote repository to download the BTVNanoCommissioning repository. If not specified, the local directory will be packed and transferred as the condor input, potentially leading to higher loads for condor transfers. Use the format e.g.--remoteRepo 'https://github.com/cms-btv-pog/BTVNanoCommissioning.git -b master'
.
After executing the command, a new folder will be created, preparing the submission. Follow the on-screen instructions and utilize condor_submit ...
to submit the jdl file. The output will be transferred to the designated XRootD destination.
The script provided by Pablo to resubmit failure jobs in script/missingFiles.py
from the original job folder.
Frequent issues for standalone condor jobs submission
- CMS Connect provides a condor interface where one can submit jobs to all resources available in the CMS Global Pool. See WorkBookCMSConnect Twiki for the instructions if you use it for the first time.
- The submitted jobs are of the kind which requires a proper setup of the X509 proxy, to use the XRootD service to access and store data. In the generated
.jdl
file, you may see a line configured for this purposeuse_x509userproxy = true
. If you have not submitted jobs of this kind on lxplus condor, we recommend you to add a linetoexport X509_USER_PROXY=$HOME/x509up_u`id -u`
.bashrc
and run it so the proxy file will be stored in your AFS folder instead of in your/tmp/USERNAME
folder. For submission on cmsconnect, no specific action is required.
Use fetch.py
in folder scripts/
to obtain your samples json files. You can create $input_list
,which can be a list of datasets taken from CMS DAS or names of dataset(need to specify campaigns explicity), and create the json contains dataset_name:[filelist]
. One can specify the local path in that input list for samples not published in CMS DAS.
$output_json_name$
is the name of your output samples json file.
The --whitelist_sites, --blacklist_sites
are considered for fetch dataset if multiple sites are available
## File publish in DAS, input MC file name list, specified --from_dataset and add campaign info, if more than one campaign found, would ask for specify explicity
python scripts/fetch.py -i $MC_FILE_LIST -o ${output_json_name} --from_dataset --campaign Run3Summer23BPixNanoAODv12
## File publish in DAS, input DAS path
python fetch.py --input ${input_DAS_list} --output ${output_json_name} (--xrd {prefix_forsite})
## Not publish case, specify site by --xrd prefix
python fetch.py --input ${input_list} --output ${output_json_name} --xrd {prefix_forsite}
# where the input list should contains
$DATASET_NAME $PATH_TO_FILE
The output_json_name
must contain the BTV name tag (e.g. BTV_Run3_2022_Comm_v1
).
You might need to rename the json key name with following name scheme:
For the data sample please use the naming scheme,
$dataset_$Run
#i.e.
SingleMuon_Run2022C-PromptReco-v1
For MC, please be consistent with the dataset name in CMS DAS, as it cannot be mapped to the cross section otherwise.
$dataset
#i.e.
WW_TuneCP5_13p6TeV-pythia8
Get the run & luminosity information for the processed events from the coffea output files. When you use --skipbadfiles
, the submission will ignore files not accesible(or time out) by xrootd
. This script helps you to dump the processed luminosity into a json file which can be calculated by brilcalc
tool and provide a list of failed lumi sections by comparing the original json input to the one from the .coffea
files.
# all is default, dump lumi and failed files, if run -t lumi only case. no json file need to be specified
python scripts/dump_processed.py -c $COFFEA_FILES -n $OUTPUT_NAME (-j $ORIGINAL_JSON -t [all,lumi,failed])
❗ If the correction files are not supported yet by jsonpog-integration, you can still try with custom input data.
All the lumiMask
, correction files (SFs, pileup weight), and JEC, JER files are under BTVNanoCommissioning/src/data/
following the substructure ${type}/${campaign}/${files}
(except lumiMasks
and Prescales
)
Type | File type | Comments |
---|---|---|
lumiMasks |
.json |
Masked good lumi-section used for physics analysis |
Prescales |
.txt |
HLT paths for prescaled triggers |
PU |
.pkl.gz or .histo.root |
Pileup reweight files, matched MC to data |
LSF |
.histo.root |
Lepton ID/Iso/Reco/Trigger SFs |
BTV |
.csv or .root |
b-tagger, c-tagger SFs |
JME |
.txt |
JER, JEC files |
Create a dict
entry under correction_config
with dedicated campaigns in BTVNanoCommissioning/src/utils/AK4_parameters.py
.
Take `Rereco17_94X` as an example.
# specify campaign
"Rereco17_94X":
{
##Load files with dedicated type:filename
"lumiMask": "Cert_314472-325175_13TeV_17SeptEarlyReReco2018ABC_PromptEraD_Collisions18_JSON.txt",
"PU": "94XPUwei_corrections.pkl.gz",
"JME": "jec_compiled.pkl.gz",
## Btag SFs- create dict specifying SFs for DeepCSV b-tag(DeepCSVB), DeepJet b-tag(DeepJetB),DeepCSV c-tag(DeepCSVC), DeepJet c-tag(DeepJetC),
"BTV": {
### b-tag
"DeepCSVB": "DeepCSV_94XSF_V5_B_F.csv",
"DeepJetB": "DeepFlavour_94XSF_V4_B_F.csv",
### c-tag
"DeepCSVC": "DeepCSV_ctagSF_MiniAOD94X_2017_pTincl_v3_2_interp.root",
"DeepJetC": "DeepJet_ctagSF_MiniAOD94X_2017_pTincl_v3_2_interp.root",
},
## lepton SF - create dict specifying SFs for electron/muon ID/ISO/RECO SFs
"LSF": {
### Following the scheme "${SF_name} ${histo_name_in_root_file}": "${file}"
"ele_Trig TrigSF": "Ele32_L1DoubleEG_TrigSF_vhcc.histo.root",
"ele_ID EGamma_SF2D": "ElectronIDSF_94X_MVA80WP.histo.root",
"ele_Rereco EGamma_SF2D": "ElectronRecoSF_94X.histo.root",
"mu_ID NUM_TightID_DEN_genTracks_pt_abseta": "RunBCDEF_MuIDSF.histo.root",
"mu_ID_low NUM_TightID_DEN_genTracks_pt_abseta": "RunBCDEF_MuIDSF_lowpT.histo.root",
"mu_Iso NUM_TightRelIso_DEN_TightIDandIPCut_pt_abseta": "RunBCDEF_MuISOSF.histo.root",
},
},
The official correction files collected in jsonpog-integration is updated by POG except lumiMask
and JME
still updated by maintainer. No longer to request input files in the correction_config
.
See the example with `2017_UL`.
"2017_UL": {
# Same with custom config
"lumiMask": "Cert_294927-306462_13TeV_UL2017_Collisions17_MuonJSON.txt",
"JME": "jec_compiled.pkl.gz",
# no config need to be specify for PU weights
"PU": None,
# Btag SFs - specify $TAGGER : $TYPE-> find [$TAGGER_$TYPE] in json file
"BTV": {"deepCSV": "shape", "deepJet": "shape"},
"roccor": None,
# JMAR, IDs from JME- Following the scheme: "${SF_name}": "${WP}"
"JMAR": {"PUJetID_eff": "L"},
"LSF": {
# Electron SF - Following the scheme: "${SF_name} ${SF_map} ${year}": "${WP}"
# https://github.com/cms-egamma/cms-egamma-docs/blob/master/docs/EgammaSFJSON.md
"ele_ID 2017 UL-Electron-ID-SF": "wp90iso",
"ele_Reco 2017 UL-Electron-ID-SF": "RecoAbove20",
# Muon SF - Following the scheme: "${SF_name} ${year}": "${WP}"
# WPs : ['NUM_GlobalMuons_DEN_genTracks', 'NUM_HighPtID_DEN_TrackerMuons', 'NUM_HighPtID_DEN_genTracks', 'NUM_IsoMu27_DEN_CutBasedIdTight_and_PFIsoTight', 'NUM_LooseID_DEN_TrackerMuons', 'NUM_LooseID_DEN_genTracks', 'NUM_LooseRelIso_DEN_LooseID', 'NUM_LooseRelIso_DEN_MediumID', 'NUM_LooseRelIso_DEN_MediumPromptID', 'NUM_LooseRelIso_DEN_TightIDandIPCut', 'NUM_LooseRelTkIso_DEN_HighPtIDandIPCut', 'NUM_LooseRelTkIso_DEN_TrkHighPtIDandIPCut', 'NUM_MediumID_DEN_TrackerMuons', 'NUM_MediumID_DEN_genTracks', 'NUM_MediumPromptID_DEN_TrackerMuons', 'NUM_MediumPromptID_DEN_genTracks', 'NUM_Mu50_or_OldMu100_or_TkMu100_DEN_CutBasedIdGlobalHighPt_and_TkIsoLoose', 'NUM_SoftID_DEN_TrackerMuons', 'NUM_SoftID_DEN_genTracks', 'NUM_TightID_DEN_TrackerMuons', 'NUM_TightID_DEN_genTracks', 'NUM_TightRelIso_DEN_MediumID', 'NUM_TightRelIso_DEN_MediumPromptID', 'NUM_TightRelIso_DEN_TightIDandIPCut', 'NUM_TightRelTkIso_DEN_HighPtIDandIPCut', 'NUM_TightRelTkIso_DEN_TrkHighPtIDandIPCut', 'NUM_TrackerMuons_DEN_genTracks', 'NUM_TrkHighPtID_DEN_TrackerMuons', 'NUM_TrkHighPtID_DEN_genTracks']
"mu_Reco 2017_UL": "NUM_TrackerMuons_DEN_genTracks",
"mu_HLT 2017_UL": "NUM_IsoMu27_DEN_CutBasedIdTight_and_PFIsoTight",
"mu_ID 2017_UL": "NUM_TightID_DEN_TrackerMuons",
"mu_Iso 2017_UL": "NUM_TightRelIso_DEN_TightIDandIPCut",
},
},
! this only works in lxplus
Generate prescale weights using brilcalc
python scripts/dump_prescale.py --HLT $HLT --lumi $LUMIMASK
# HLT : put prescaled triggers
# lumi: golden lumi json
❗ In case existing correction file doesn't work for you due to the incompatibility of cloudpickle
in different python versions. Please recompile the file to get new pickle file.
Under compile_jec.py
you need to create dedicated jet factory files with different campaigns. Following the name scheme with mc
for MC and data${run}
for data.
Compile correction pickle files for a specific JEC campaign by changing the dict of jet_factory, and define the MC campaign and the output file name by passing it as arguments to the python script:
python -m BTVNanoCommissioning.utils.compile_jec ${campaign} jec_compiled
e.g. python -m BTVNanoCommissioning.utils.compile_jec Summer23 jec_compiled
To quickly check the data/MC quickly, run part data/MC files, no SFs/JEC are applied, only the lumimasks.
- Get the file list from DAS, use the
scripts/fetch.py
scripts to obtain the jsons - Replace the lumimask name in prompt_dataMC in
AK4_parameters.py
, you can dosed -i 's/$LUMIMASK_DATAMC/xxx.json/g
- Run through the dataset to obtained the
coffea
files - Dump the lumi information via
dump_processed.py
, then usebrilcalc
to get the dedicated luminosity info - Obtained data MC plots
:exclamation_mark: If using wildcard for input, do not forget the quoatation marks! (see 2nd example below)
You can specify -v all
to plot all the variables in the coffea
file, or use wildcard options (e.g. -v "*DeepJet*"
for the input variables containing DeepJet
)
🆕 non-uniform rebinning is possible, specify the bins with list of edges --autorebin 50,80,81,82,83,100.5
python scripts/plotdataMC.py -i a.coffea,b.coffea --lumi 41500 -p ttdilep_sf -v z_mass,z_pt
python scripts/plotdataMC.py -i "test*.coffea" --lumi 41500 -p ttdilep_sf -v z_mass,z_pt # with wildcard option need ""
more arguments
options:
-h, --help show this help message and exit
--lumi LUMI luminosity in /pb
--com COM sqrt(s) in TeV
-p {ttdilep_sf,ttsemilep_sf,ctag_Wc_sf,ctag_DY_sf,ctag_ttsemilep_sf,ctag_ttdilep_sf}, --phase {dilep_sf,ttsemilep_sf,ctag_Wc_sf,ctag_DY_sf,ctag_ttsemilep_sf,ctag_ttdilep_sf}
which phase space
--log LOG log on y axis
--norm NORM Use for reshape SF, scale to same yield as no SFs case
-v VARIABLE, --variable VARIABLE
variables to plot, splitted by ,. Wildcard option * available as well. Specifying `all` will run through all variables.
--SF make w/, w/o SF comparisons
--ext EXT prefix name
-i INPUT, --input INPUT
input coffea files (str), splitted different files with ','. Wildcard option * available as well.
--autorebin AUTOREBIN
Rebin the plotting variables, input `int` or `list`. int: merge N bins. list of number: rebin edges(non-uniform bin is possible)
--xlabel XLABEL rename the label for x-axis
--ylabel YLABEL rename the label for y-axis
--splitOSSS SPLITOSSS
Only for W+c phase space, split opposite sign(1) and same sign events(-1), if not specified, the combined OS-SS phase space is used
--xrange XRANGE custom x-range, --xrange xmin,xmax
--flow FLOW
str, optional {None, 'show', 'sum'} Whether plot the under/overflow bin. If 'show', add additional under/overflow bin. If 'sum', add the under/overflow bin content to first/last bin.
--split {flavor,sample,sample_flav}
Decomposition of MC samples. Default is split to jet flavor(udsg, pu, c, b), possible to split by group of MC
samples. Combination of jetflavor+ sample split is also possible
You can specify -v all
to plot all the variables in the coffea
file, or use wildcard options (e.g. -v "*DeepJet*"
for the input variables containing DeepJet
)
:exclamation_mark: If using wildcard for input, do not forget the quoatation marks! (see 2nd example below)
# with merge map, compare ttbar with data
python scripts/comparison.py -i "*.coffea" --mergemap '{"ttbar": ["TTto2L2Nu_TuneCP5_13p6TeV_powheg-pythia8","TTto4Q_TuneCP5_13p6TeV_powheg-pythia8","TTtoLNu2Q_TuneCP5_13p6TeV_powheg-pythia8],"data":["MuonRun2022C-27Jun2023-v1","MuonRun2022D-27Jun2023-v1"]}' -r ttbar -c data -v mu_pt -p ttdilep_sf
# if no mergemap, take the key name directly
python scripts/comparison.py -i datac.coffea,datad.coffea -r MuonRun2022C-27Jun2023-v1 -c MuonRun2022D-27Jun2023-v1 -v mu_pt -p ttdilep_sf
more arguments
options:
-h, --help show this help message and exit
-p {dilep_sf,ttsemilep_sf,ctag_Wc_sf,ctag_DY_sf,ctag_ttsemilep_sf,ctag_ttdilep_sf}, --phase {dilep_sf,ttsemilep_sf,ctag_Wc_sf,ctag_DY_sf,ctag_ttsemilep_sf,ctag_ttdilep_sf}
which phase space
-i INPUT, --input INPUT
input coffea files (str), splitted different files with ','. Wildcard option * available as well.
-r REF, --ref REF referance dataset
-c COMPARED, --compared COMPARED
compared datasets, splitted by ,
--sepflav SEPFLAV seperate flavour(b/c/light)
--log log on y axis
-v VARIABLE, --variable VARIABLE
variables to plot, splitted by ,. Wildcard option * available as well. Specifying `all` will run through all variables.
--ext EXT prefix name
--com COM sqrt(s) in TeV
--mergemap MERGEMAP
Group list of sample(keys in coffea) as reference/compare set as dictionary format. Keys would be the new lables of the group
--autorebin AUTOREBIN
Rebin the plotting variables, input `int` or `list`. int: merge N bins. list of number: rebin edges(non-uniform bin is possible)
--xlabel XLABEL rename the label for x-axis
--ylabel YLABEL rename the label for y-axis
--norm compare shape, normalized yield to reference
--xrange XRANGE custom x-range, --xrange xmin,xmax
--flow FLOW
str, optional {None, 'show', 'sum'} Whether plot the under/overflow bin. If 'show', add additional under/overflow bin. If 'sum', add the under/overflow bin content to first/last bin.
Extract the ROCs for different tagger and efficiencies from validation workflow
python scripts/validation_plot.py -i $INPUT_COFFEA -v $VERSION
You can perform a study of linear correlations of b-tagging input variables. Additionally, soft muon variables may be added into the study by requesting --SMu
argument. If you wan to limit the outputs only to DeepFlavB, PNetB and RobustParTAK4B, you can use the --limit_outputs
option. If you want to use only the set of variables used for tagger training, not just all the input variables, then use the option --limit_inputs
. To limit number of files read, make use of option --max_files
. In case your study requires splitting samples by flavour, use --flavour_split
. --split_region_b
performs a sample splitting based on the DeepFlavB >/< 0.5. For Data/MC comparison purpose pay attention - change ranking factors (xs/sumw) in L420!
python correlation_plots.py $input_folder [--max_files $nmax_files --SMu --limit_inputs --limit_outputs --specify_MC --flavour_split --split_region_b]
To further investigate the correlations, one can create the 2D plots of the variables used in this study. Inputs and optional arguments are the same as for the correlation plots study.
python 2Dhistogramms.py $input_folder [--max_files $nmax_files --SMu --limit_inputs --limit_outputs --specify_MC --flavour_split --split_region_b]
Use scripts/make_template.py
to dump 1D/2D histogram from .coffea
to TH1D/TH2D
with hist. MC histograms can be reweighted to according to luminosity value given via --lumi
. You can also merge several files
python scripts/make_template.py -i "testfile/*.coffea" --lumi 7650 -o test.root -v mujet_pt -a '{"flav":0,"osss":"sum"}'
more arguments
-i INPUT, --input INPUT
Input coffea file(s)
-v VARIABLE, --variable VARIABLE
Variables to store (histogram name)
-a AXIS, --axis AXIS dict, put the slicing of histogram, specify 'sum' option as string
--lumi LUMI Luminosity in /pb
-o OUTPUT, --output OUTPUT
output root file name
--mergemap MERGEMAP Specify mergemap as dict, '{merge1:[dataset1,dataset2]...}' Also works with the json file with dict
mergemap example
{
"WJets": ["WJetsToLNu_TuneCP5_13p6TeV-madgraphMLM-pythia8"],
"VV": [ "WW_TuneCP5_13p6TeV-pythia8", "WZ_TuneCP5_13p6TeV-pythia8", "ZZ_TuneCP5_13p6TeV-pythia8"],
"TT": [ "TTTo2J1L1Nu_CP5_13p6TeV_powheg-pythia8", "TTTo2L2Nu_CP5_13p6TeV_powheg-pythia8"],
"ST":[ "TBbarQ_t-channel_4FS_CP5_13p6TeV_powheg-madspin-pythia8", "TbarWplus_DR_AtLeastOneLepton_CP5_13p6TeV_powheg-pythia8", "TbarBQ_t-channel_4FS_CP5_13p6TeV_powheg-madspin-pythia8", "TWminus_DR_AtLeastOneLepton_CP5_13p6TeV_powheg-pythia8"],
"data":[ "Muon_Run2022C-PromptReco-v1", "SingleMuon_Run2022C-PromptReco-v1", "Muon_Run2022D-PromptReco-v1", "Muon_Run2022D-PromptReco-v2"]
}
The BTV tutorial for coffea part is under notebooks
and the template to construct new workflow is src/BTVNanoCommissioning/workflows/example.py
Here are some tips provided for developers working on their forked version of this repository. Also some useful git commands can be found here
Since the CI pipelines involve reading files via xrootd
and access gitlab.cern.ch, you need to save some secrets in your forked directory.
Yout can find the secret configuration in the direcotry : Settings>>Secrets>>Actions
, and create the following secrets:
GIT_CERN_SSH_PRIVATE
:- Create a ssh key pair with
ssh-keygen -t rsa -b 4096
(do not overwrite with your local one), add the public key to your CERN gitlab account - Copy the private key to the entry
- Create a ssh key pair with
GRID_PASSWORD
: Add your grid password to the entry.GRID_USERCERT
&GRID_USERKEY
: Encrypt your grid user certificationbase64 -i ~/.globus/userkey.pem | awk NF=NF RS= OFS=
andbase64 -i ~/.globus/usercert.pem | awk NF=NF RS= OFS=
and copy the output to the entry.
Special commit head messages could run different commands in actions (add the flag in front of your commit) The default configureation is doing
python runner.py --workflow emctag_ttdilep_sf --json metadata/test_bta_run3.json --limit 1 --executor iterative --campaign Summer23 --isArray --isSyst all
[skip ci]
: not running ci at all in the commit messageci:skip array
: remove--isArray
optionci:skip syst
: remove--isSyst all
optionci:JERC_split
: change systematic option to split JERC uncertainty sources--isSyst JERC_split
ci:weight_only
: change systematic option to weight only variations--isSyst weight_only
- On your local machine, edit
.ssh/config
:
Host lxplus*
HostName lxplus7.cern.ch
User <your-user-name>
ForwardX11 yes
ForwardAgent yes
ForwardX11Trusted yes
Host *_f
LocalForward localhost:8800 localhost:8800
ExitOnForwardFailure yes
- Connect to remote with
ssh lxplus_f
- Start a jupyter notebook:
jupyter notebook --ip=127.0.0.1 --port 8800 --no-browser
- URL for notebook will be printed, copy and open in local browser