9.1.21
,9.1
(9.1/Dockerfile)9.2.16
,9.2
(9.2/Dockerfile)9.3.12
,9.3
(9.3/Dockerfile)9.4.7
,9.4
(9.4/Dockerfile)9.5.2
,9.5
,9
,latest
(9.5/Dockerfile)
For more information about this image and its history, please see the relevant manifest file (library/postgres
). This image is updated via pull requests to the docker-library/official-images
GitHub repo.
For detailed information about the virtual/transfer sizes and individual layers of each of the above supported tags, please see the postgres/tag-details.md
file in the docker-library/docs
GitHub repo.
PostgreSQL, often simply "Postgres", is an object-relational database management system (ORDBMS) with an emphasis on extensibility and standards-compliance. As a database server, its primary function is to store data, securely and supporting best practices, and retrieve it later, as requested by other software applications, be it those on the same computer or those running on another computer across a network (including the Internet). It can handle workloads ranging from small single-machine applications to large Internet-facing applications with many concurrent users. Recent versions also provide replication of the database itself for security and scalability.
PostgreSQL implements the majority of the SQL:2011 standard, is ACID-compliant and transactional (including most DDL statements) avoiding locking issues using multiversion concurrency control (MVCC), provides immunity to dirty reads and full serializability; handles complex SQL queries using many indexing methods that are not available in other databases; has updateable views and materialized views, triggers, foreign keys; supports functions and stored procedures, and other expandability, and has a large number of extensions written by third parties. In addition to the possibility of working with the major proprietary and open source databases, PostgreSQL supports migration from them, by its extensive standard SQL support and available migration tools. And if proprietary extensions had been used, by its extensibility that can emulate many through some built-in and third-party open source compatibility extensions, such as for Oracle.
$ docker run --name some-postgres -e POSTGRES_PASSWORD=mysecretpassword -d postgres
This image includes EXPOSE 5432
(the postgres port), so standard container linking will make it automatically available to the linked containers. The default postgres
user and database are created in the entrypoint with initdb
.
The postgres database is a default database meant for use by users, utilities and third party applications.
postgresql.org/docs
$ docker run --name some-app --link some-postgres:postgres -d application-that-uses-postgres
$ docker run -it --link some-postgres:postgres --rm postgres sh -c 'exec psql -h "$POSTGRES_PORT_5432_TCP_ADDR" -p "$POSTGRES_PORT_5432_TCP_PORT" -U postgres'
The PostgreSQL image uses several environment variables which are easy to miss. While none of the variables are required, they may significantly aid you in using the image.
This environment variable is recommended for you to use the PostgreSQL image. This environment variable sets the superuser password for PostgreSQL. The default superuser is defined by the POSTGRES_USER
environment variable. In the above example, it is being set to "mysecretpassword".
This optional environment variable is used in conjunction with POSTGRES_PASSWORD
to set a user and its password. This variable will create the specified user with superuser power and a database with the same name. If it is not specified, then the default user of postgres
will be used.
This optional environment variable can be used to define another location - like a subdirectory - for the database files. The default is /var/lib/postgresql/data
, but if the data volume you're using is a fs mountpoint (like with GCE persistent disks), Postgres initdb
recommends a subdirectory (for example /var/lib/postgresql/data/pgdata
) be created to contain the data.
This optional environment variable can be used to define a different name for the default database that is created when the image is first started. If it is not specified, then the value of POSTGRES_USER
will be used.
This optional environment variable can be used to send arguments to postgres initdb
. The value is a space separated string of arguments as postgres initdb
would expect them. This is useful for adding functionality like data page checksums: -e POSTGRES_INITDB_ARGS="--data-checksums"
.
If you would like to do additional initialization in an image derived from this one, add one or more *.sql
or *.sh
scripts under /docker-entrypoint-initdb.d
(creating the directory if necessary). After the entrypoint calls initdb
to create the default postgres
user and database, it will run any *.sql
files and source any *.sh
scripts found in that directory to do further initialization before starting the service.
For example, to add an additional user and database, add the following to /docker-entrypoint-initdb.d/init-user-db.sh
:
#!/bin/bash
set -e
psql -v ON_ERROR_STOP=1 --username "$POSTGRES_USER" <<-EOSQL
CREATE USER docker;
CREATE DATABASE docker;
GRANT ALL PRIVILEGES ON DATABASE docker TO docker;
EOSQL
These initialization files will be executed in sorted name order as defined by the current locale, which defaults to en_US.utf8
. Any *.sql
files will be executed by POSTGRES_USER
, which defaults to the postgres
superuser. It is recommended that any psql
commands that are run inside of a *.sh
script be executed as POSTGRES_USER
by using the --username "$POSTGRES_USER"
flag. This user will be able to connect without a password due to the presence of trust
authentication for Unix socket connections made inside the container.
You can also extend the image with a simple Dockerfile
to set a different locale. The following example will set the default locale to de_DE.utf8
:
FROM postgres:9.4
RUN localedef -i de_DE -c -f UTF-8 -A /usr/share/locale/locale.alias de_DE.UTF-8
ENV LANG de_DE.utf8
Since database initialization only happens on container startup, this allows us to set the language before it is created.
If there is no database when postgres
starts in a container, then postgres
will create the default database for you. While this is the expected behavior of postgres
, this means that it will not accept incoming connections during that time. This may cause issues when using automation tools, such as fig
, that start several containers simultaneously.
This image is officially supported on Docker version 1.10.3.
Support for older versions (down to 1.6) is provided on a best-effort basis.
Please see the Docker installation documentation for details on how to upgrade your Docker daemon.
Documentation for this image is stored in the postgres/
directory of the docker-library/docs
GitHub repo. Be sure to familiarize yourself with the repository's README.md
file before attempting a pull request.
If you have any problems with or questions about this image, please contact us on the mailing list or through a GitHub issue. If the issue is related to a CVE, please check for a cve-tracker
issue on the official-images
repository first.
You can also reach many of the official image maintainers via the #docker-library
IRC channel on Freenode.
You are invited to contribute new features, fixes, or updates, large or small; we are always thrilled to receive pull requests, and do our best to process them as fast as we can.
Before you start to code, we recommend discussing your plans on the mailing list or through a GitHub issue, especially for more ambitious contributions. This gives other contributors a chance to point you in the right direction, give you feedback on your design, and help you find out if someone else is working on the same thing.