Skip to content

Latest commit

 

History

History
 
 

streaming

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 

Ray Streaming

Ray Streaming is a streaming data processing framework built on ray. It will be helpful for you to build jobs dealing with real-time data.

Key Features

  1. Cross Language. Based on Ray's multi-language actor, Ray Streaming can also run in multiple languages(only Python and Java is supported currently) with high efficiency. You can implement your operator in different languages and run them in one job.
  2. Single Node Failover. We designed a special failover mechanism that only needs to rollback the failed node it's own, in most cases, to recover the job. This will be a huge benefit if your job is sensitive about failure recovery time. In other frameworks like Flink, instead, the entire job should be restarted once a node has failure.

Examples

Python

import ray
from ray.streaming import StreamingContext

ctx = StreamingContext.Builder() \
    .build()
ctx.read_text_file(__file__) \
    .set_parallelism(1) \
    .flat_map(lambda x: x.split()) \
    .map(lambda x: (x, 1)) \
    .key_by(lambda x: x[0]) \
    .reduce(lambda old_value, new_value:
            (old_value[0], old_value[1] + new_value[1])) \
    .filter(lambda x: "ray" not in x) \
    .sink(lambda x: print("result", x))
ctx.submit("word_count")

Java

StreamingContext context = StreamingContext.buildContext();
List<String> text = Collections.singletonList("hello world");
DataStreamSource.fromCollection(context, text)
    .flatMap((FlatMapFunction<String, WordAndCount>) (value, collector) -> {
        String[] records = value.split(" ");
        for (String record : records) {
            collector.collect(new WordAndCount(record, 1));
        }
    })
    .filter(pair -> !pair.word.contains("world"))
    .keyBy(pair -> pair.word)
    .reduce((oldValue, newValue) ->
            new WordAndCount(oldValue.word, oldValue.count + newValue.count))
    .sink(result -> System.out.println("sink result=" + result));
context.execute("testWordCount");

Use Java Operators in Python

import ray
from ray.streaming import StreamingContext

ctx = StreamingContext.Builder().build()
ctx.from_values("a", "b", "c") \
    .as_java_stream() \
    .map("io.ray.streaming.runtime.demo.HybridStreamTest$Mapper1") \
    .filter("io.ray.streaming.runtime.demo.HybridStreamTest$Filter1") \
    .as_python_stream() \
    .sink(lambda x: print("result", x))
ctx.submit("HybridStreamTest")

Use Python Operators in Java

StreamingContext context = StreamingContext.buildContext();
DataStreamSource<String> streamSource =
    DataStreamSource.fromCollection(context, Arrays.asList("a", "b", "c"));
streamSource
    .map(x -> x + x)
    .asPythonStream()
    .map("ray.streaming.tests.test_hybrid_stream", "map_func1")
    .filter("ray.streaming.tests.test_hybrid_stream", "filter_func1")
    .asJavaStream()
    .sink(value -> System.out.println("HybridStream sink=" + value));
context.execute("HybridStreamTestJob");

Installation

Python

Ray Streaming is packaged together with Ray, install Ray with: pip install ray, this wheel contains all dependencies your need to run Python streaming, including Java operators supporting.

Java

Import Ray Streaming using maven:

<dependency>
    <artifactId>ray-api</artifactId>
    <groupId>io.ray</groupId>
    <version>1.0.1</version>
</dependency>
<dependency>
    <artifactId>ray-runtime</artifactId>
    <groupId>io.ray</groupId>
    <version>1.0.1</version>
</dependency>
<dependency>
    <artifactId>streaming-api</artifactId>
    <groupId>io.ray</groupId>
    <version>1.0.1</version>
</dependency>
<dependency>
    <artifactId>streaming-runtime</artifactId>
    <groupId>io.ray</groupId>
    <version>1.0.1</version>
</dependency>

Internal Design

Overall Architecture

architecture

Ray Streaming is built on Ray. We use Ray's actor to run everything, and use Ray's direct call for communication.

There are two main types of actor: job master and job worker.

When you execute context.submit() in your driver, we'll first create a job master, then job master will create all job workers needed to run your operator. Then job master will be responsible to coordinate all workers, including checkpoint, failover, etc.

Check Ray Streaming Proposal to get more detailed information about the overall design.

Fault Tolerance Mechanism

As mentioned above, different from other frameworks, We designed a special failover mechanism that only needs to rollback the failed node it's own, in most cases, to recover the job. The main idea to achieve this feature is saving messages for each node, and replay them from upstream when node has failure.

Check Fault Tolerance Proposal for more detailed information about our fault tolerance mechanism.

Development Guides

  1. Build streaming java

    • build ray
      • bazel build //java:gen_maven_deps
      • cd java && mvn clean install -Dmaven.test.skip=true && cd ..
    • build streaming
      • bazel build //streaming/java:gen_maven_deps
      • mvn clean install -Dmaven.test.skip=true
  2. Build ray python will build ray streaming python.

  3. Run examples

    # c++ test
    cd streaming/ && bazel test ...
    sh src/test/run_streaming_queue_test.sh
    cd ..
    
    # python test
    pushd python/ray/streaming/
    pushd examples
    python simple.py --input-file toy.txt
    popd
    pushd tests
    pytest .
    popd
    popd
    
    # java test
    cd streaming/java/streaming-runtime
    mvn test

More Information

Getting Involved