-
Notifications
You must be signed in to change notification settings - Fork 50
/
recommend_challenge.py
39 lines (25 loc) · 1.08 KB
/
recommend_challenge.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import numpy as np
from lightfm import LightFM
from fetch_lastfm import fetch_lastfm
data = fetch_lastfm()
model = LightFM(loss='warp')
model.fit(data['matrix'], epochs=30, num_threads=2)
# Get recommendationns function
def get_recommendations(model, coo_mtrx, users_ids):
n_items = coo_mtrx.shape[1]
for user in users_ids:
# TODO create known positives
# Artists the model predicts they will like
scores = model.predict(user, np.arange(n_items))
top_scores = np.argsort(-scores)[:3]
print 'Recomendations for user %s:' % user
for x in top_scores.tolist():
for artist, values in data['artists'].iteritems():
if int(x) == values['id']:
print ' - %s' % values['name']
print '\n' # Get it pretty
user_1 = raw_input('Select user_1 (0 to %s): ' % data['users'])
user_2 = raw_input('Select user_2 (0 to %s): ' % data['users'])
user_3 = raw_input('Select user_3 (0 to %s): ' % data['users'])
print '\n' # Get it pretty
get_recommendations(model, data['matrix'], [user_1, user_2, user_3])