-
Notifications
You must be signed in to change notification settings - Fork 32
/
composites.py
576 lines (499 loc) · 26.1 KB
/
composites.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# This file is part of Zennit
# Copyright (C) 2019-2021 Christopher J. Anders
#
# zennit/composites.py
#
# Zennit is free software: you can redistribute it and/or modify it under
# the terms of the GNU Lesser General Public License as published by the Free
# Software Foundation; either version 3 of the License, or (at your option) any
# later version.
#
# Zennit is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
# more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this library. If not, see <https://www.gnu.org/licenses/>.
'''Composites, registered in a global composite dict.'''
import torch
from .core import Composite
from .layer import Sum
from .rules import Gamma, Epsilon, ZBox, ZPlus, AlphaBeta, Flat, Pass, Norm
from .rules import ReLUDeconvNet, ReLUGuidedBackprop, ReLUBetaSmooth
from .types import Convolution, Linear, AvgPool, Activation, BatchNorm
class LayerMapComposite(Composite):
'''A Composite for which hooks are specified by a mapping from module types to hooks.
Parameters
----------
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, layer_map, canonizers=None):
self.layer_map = layer_map
super().__init__(module_map=self.mapping, canonizers=canonizers)
# pylint: disable=unused-argument
def mapping(self, ctx, name, module):
'''Get the appropriate hook given a mapping from module types to hooks.
Parameters
----------
ctx: dict
A context dictionary to keep track of previously registered hooks.
name: str
Name of the module.
module: obj:`torch.nn.Module`
Instance of the module to find a hook for.
Returns
-------
obj:`Hook` or None
The hook found with the module type in the given layer map,
or None if no applicable hook was found.
'''
return next((hook for types, hook in self.layer_map if isinstance(module, types)), None)
class SpecialFirstLayerMapComposite(LayerMapComposite):
'''A Composite for which hooks are specified by a mapping from module types to hooks.
Parameters
----------
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook.
first_map: `list[tuple[tuple[torch.nn.Module, ...], Hook]]`
Applicable mapping for the first layer, same format as `layer_map`.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, layer_map, first_map, canonizers=None):
self.first_map = first_map
super().__init__(layer_map=layer_map, canonizers=canonizers)
def mapping(self, ctx, name, module):
'''Get the appropriate hook given a mapping from module types to hooks and a special mapping for the first
occurrence in another mapping.
Parameters
----------
ctx: dict
A context dictionary to keep track of previously registered hooks.
name: str
Name of the module.
module: obj:`torch.nn.Module`
Instance of the module to find a hook for.
Returns
-------
obj:`Hook` or None
The hook found with the module type in the given layer map,
in the first layer map if this was the first layer,
or None if no applicable hook was found.
'''
if not ctx.get('first_layer_visited', False):
for types, hook in self.first_map:
if isinstance(module, types):
ctx['first_layer_visited'] = True
return hook
return super().mapping(ctx, name, module)
class NameMapComposite(Composite):
'''A Composite for which hooks are specified by a mapping from module names to hooks.
Parameters
----------
name_map: `list[tuple[tuple[str, ...], Hook]]`
A mapping as a list of tuples, with a tuple of applicable module names and a Hook.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, name_map, canonizers=None):
self.name_map = name_map
super().__init__(module_map=self.mapping, canonizers=canonizers)
# pylint: disable=unused-argument
def mapping(self, ctx, name, module):
'''Get the appropriate hook given a mapping from module names to hooks.
Parameters
----------
ctx: dict
A context dictionary to keep track of previously registered hooks.
name: str
Name of the module.
module: obj:`torch.nn.Module`
Instance of the module to find a hook for.
Returns
-------
obj:`Hook` or None
The hook found with the module name in the given name map, or None if no applicable
hook was found.
'''
return next((hook for names, hook in self.name_map if name in names), None)
class MixedComposite(Composite):
'''A Composite for which hooks are specified by a list of composites.
Each composite defines a mapping from layer property to a specific Hook.
The list order of composites defines their matching order.
Parameters
----------
composites: `list[Composite]`
A list of Composites. The list order of composites defines their matching order.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, composites, canonizers=None):
if canonizers is None:
canonizers = []
self.composites = composites
super().__init__(
module_map=self.mapping,
canonizers=sum([composite.canonizers for composite in composites], canonizers)
)
def mapping(self, ctx, name, module):
'''Get the appropriate hook given a list of composites.
Parameters
----------
ctx: dict
A context dictionary to keep track of previously registered hooks.
name: str
Name of the module.
module: obj:`torch.nn.Module`
Instance of the module to find a hook for.
Returns
-------
obj:`Hook` or None
The hook found by the first match in the composite list,
or None if no applicable hook was found.
'''
# create a context for each of the sub-composites if ctx is empty
if not ctx:
ctx.update({composite: {} for composite in self.composites})
# create list of hooks by evaluating module maps of all given composites
hooks = [composite.module_map(ctx[composite], name, module) for composite in self.composites]
# return first hook that is not None, if there isn't any, return None
return next((hook for hook in hooks if hook is not None), None)
class NameLayerMapComposite(MixedComposite):
'''A Composite for which hooks are specified by both a mapping from
module names and module types to hooks.
This implicitly creates instances of NameMapComposite and LayerMapComposite.
The layer-name mapping will be matched before the layer-type mapping.
Parameters
----------
name_map: `list[tuple[tuple[str, ...], Hook]]`
A mapping as a list of tuples, with a tuple of applicable module names and a Hook.
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]], optional
A mapping as a list of tuples, with a tuple of applicable module types and a Hook.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, name_map=None, layer_map=None, canonizers=None):
super().__init__(composites=[
NameMapComposite(name_map=name_map),
LayerMapComposite(layer_map=layer_map),
], canonizers=canonizers)
COMPOSITES = {}
def register_composite(name):
'''Register a composite in the global COMPOSITES dict under `name`.'''
def wrapped(composite):
'''Wrapped function to be called on the composite to register it to the global COMPOSITES dict.'''
COMPOSITES[name] = composite
return composite
return wrapped
def layer_map_base(stabilizer=1e-6):
'''Return a basic layer map (list of 2-tuples) shared by all built-in LayerMapComposites.
Parameters
----------
stabilizer: callable or float, optional
Stabilization parameter for rules other than ``Epsilon``. If ``stabilizer`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator.
Returns
-------
list[tuple[tuple[torch.nn.Module, ...], Hook]]
Basic ayer map shared by all built-in LayerMapComposites.
'''
return [
(Activation, Pass()),
(Sum, Norm(stabilizer=stabilizer)),
(AvgPool, Norm(stabilizer=stabilizer)),
(BatchNorm, Pass()),
]
@register_composite('epsilon_gamma_box')
class EpsilonGammaBox(SpecialFirstLayerMapComposite):
'''An explicit composite using the ZBox rule for the first convolutional layer, gamma rule for all following
convolutional layers, and the epsilon rule for all fully connected layers.
Parameters
----------
low: obj:`torch.Tensor`
A tensor with the same size as the input, describing the lowest possible pixel values.
high: obj:`torch.Tensor`
A tensor with the same size as the input, describing the highest possible pixel values.
epsilon: callable or float, optional
Stabilization parameter for the ``Epsilon`` rule. If ``epsilon`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator. Note that this is
called ``stabilizer`` for all other rules.
gamma: float, optional
Gamma parameter for the gamma rule.
stabilizer: callable or float, optional
Stabilization parameter for rules other than ``Epsilon``. If ``stabilizer`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator.
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook. This will be prepended to
the ``layer_map`` defined by the composite.
first_map: `list[tuple[tuple[torch.nn.Module, ...], Hook]]`
Applicable mapping for the first layer, same format as `layer_map`. This will be prepended to the ``first_map``
defined by the composite.
zero_params: list[str], optional
A list of parameter names that shall set to zero. If `None` (default), no parameters are set to zero.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(
self,
low,
high,
epsilon=1e-6,
gamma=0.25,
stabilizer=1e-6,
layer_map=None,
first_map=None,
zero_params=None,
canonizers=None
):
if layer_map is None:
layer_map = []
if first_map is None:
first_map = []
rule_kwargs = {'zero_params': zero_params}
layer_map = layer_map + layer_map_base(stabilizer) + [
(Convolution, Gamma(gamma=gamma, stabilizer=stabilizer, **rule_kwargs)),
(torch.nn.Linear, Epsilon(epsilon=epsilon, **rule_kwargs)),
]
first_map = first_map + [
(Convolution, ZBox(low=low, high=high, stabilizer=stabilizer, **rule_kwargs))
]
super().__init__(layer_map=layer_map, first_map=first_map, canonizers=canonizers)
@register_composite('epsilon_plus')
class EpsilonPlus(LayerMapComposite):
'''An explicit composite using the zplus rule for all convolutional layers and the epsilon rule for all fully
connected layers.
Parameters
----------
epsilon: callable or float, optional
Stabilization parameter for the ``Epsilon`` rule. If ``epsilon`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator. Note that this is
called ``stabilizer`` for all other rules.
stabilizer: callable or float, optional
Stabilization parameter for rules other than ``Epsilon``. If ``stabilizer`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator.
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook. This will be prepended to
the ``layer_map`` defined by the composite.
zero_params: list[str], optional
A list of parameter names that shall set to zero. If `None` (default), no parameters are set to zero.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, epsilon=1e-6, stabilizer=1e-6, layer_map=None, zero_params=None, canonizers=None):
if layer_map is None:
layer_map = []
rule_kwargs = {'zero_params': zero_params}
layer_map = layer_map + layer_map_base(stabilizer) + [
(Convolution, ZPlus(stabilizer=stabilizer, **rule_kwargs)),
(torch.nn.Linear, Epsilon(epsilon=epsilon, **rule_kwargs)),
]
super().__init__(layer_map=layer_map, canonizers=canonizers)
@register_composite('epsilon_alpha2_beta1')
class EpsilonAlpha2Beta1(LayerMapComposite):
'''An explicit composite using the alpha2-beta1 rule for all convolutional layers and the epsilon rule for all
fully connected layers.
Parameters
----------
epsilon: callable or float, optional
Stabilization parameter for the ``Epsilon`` rule. If ``epsilon`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator. Note that this is
called ``stabilizer`` for all other rules.
stabilizer: callable or float, optional
Stabilization parameter for rules other than ``Epsilon``. If ``stabilizer`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator.
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook. This will be prepended to
the ``layer_map`` defined by the composite.
zero_params: list[str], optional
A list of parameter names that shall set to zero. If `None` (default), no parameters are set to zero.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, epsilon=1e-6, stabilizer=1e-6, layer_map=None, zero_params=None, canonizers=None):
if layer_map is None:
layer_map = []
rule_kwargs = {'zero_params': zero_params}
layer_map = layer_map + layer_map_base(stabilizer) + [
(Convolution, AlphaBeta(alpha=2, beta=1, stabilizer=stabilizer, **rule_kwargs)),
(torch.nn.Linear, Epsilon(epsilon=epsilon, **rule_kwargs)),
]
super().__init__(layer_map=layer_map, canonizers=canonizers)
@register_composite('epsilon_plus_flat')
class EpsilonPlusFlat(SpecialFirstLayerMapComposite):
'''An explicit composite using the flat rule for any linear first layer, the zplus rule for all other convolutional
layers and the epsilon rule for all other fully connected layers.
Parameters
----------
epsilon: callable or float, optional
Stabilization parameter for the ``Epsilon`` rule. If ``epsilon`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator. Note that this is
called ``stabilizer`` for all other rules.
stabilizer: callable or float, optional
Stabilization parameter for rules other than ``Epsilon``. If ``stabilizer`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator.
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook. This will be prepended to
the ``layer_map`` defined by the composite.
first_map: `list[tuple[tuple[torch.nn.Module, ...], Hook]]`
Applicable mapping for the first layer, same format as `layer_map`. This will be prepended to the ``first_map``
defined by the composite.
zero_params: list[str], optional
A list of parameter names that shall set to zero. If `None` (default), no parameters are set to zero.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(
self, epsilon=1e-6, stabilizer=1e-6, layer_map=None, first_map=None, zero_params=None, canonizers=None
):
if layer_map is None:
layer_map = []
if first_map is None:
first_map = []
rule_kwargs = {'zero_params': zero_params}
layer_map = layer_map + layer_map_base(stabilizer) + [
(Convolution, ZPlus(stabilizer=stabilizer, **rule_kwargs)),
(torch.nn.Linear, Epsilon(epsilon=epsilon, **rule_kwargs)),
]
first_map = first_map + [
(Linear, Flat(stabilizer=stabilizer, **rule_kwargs))
]
super().__init__(layer_map=layer_map, first_map=first_map, canonizers=canonizers)
@register_composite('epsilon_alpha2_beta1_flat')
class EpsilonAlpha2Beta1Flat(SpecialFirstLayerMapComposite):
'''An explicit composite using the flat rule for any linear first layer, the alpha2-beta1 rule for all other
convolutional layers and the epsilon rule for all other fully connected layers.
Parameters
----------
epsilon: callable or float, optional
Stabilization parameter for the ``Epsilon`` rule. If ``epsilon`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator. Note that this is
called ``stabilizer`` for all other rules.
stabilizer: callable or float, optional
Stabilization parameter for rules other than ``Epsilon``. If ``stabilizer`` is a float, it will be added to the
denominator with the same sign as each respective entry. If it is callable, a function ``(input: torch.Tensor)
-> torch.Tensor`` is expected, of which the output corresponds to the stabilized denominator.
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook. This will be prepended to
the ``layer_map`` defined by the composite.
first_map: `list[tuple[tuple[torch.nn.Module, ...], Hook]]`
Applicable mapping for the first layer, same format as `layer_map`. This will be prepended to the ``first_map``
defined by the composite.
zero_params: list[str], optional
A list of parameter names that shall set to zero. If `None` (default), no parameters are set to zero.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(
self, epsilon=1e-6, stabilizer=1e-6, layer_map=None, first_map=None, zero_params=None, canonizers=None
):
if layer_map is None:
layer_map = []
if first_map is None:
first_map = []
rule_kwargs = {'zero_params': zero_params}
layer_map = layer_map + layer_map_base(stabilizer) + [
(Convolution, AlphaBeta(alpha=2, beta=1, stabilizer=stabilizer, **rule_kwargs)),
(torch.nn.Linear, Epsilon(epsilon=epsilon, **rule_kwargs)),
]
first_map = first_map + [
(Linear, Flat(stabilizer=stabilizer, **rule_kwargs))
]
super().__init__(layer_map=layer_map, first_map=first_map, canonizers=canonizers)
@register_composite('deconvnet')
class DeconvNet(LayerMapComposite):
'''An explicit composite modifying the gradients of all ReLUs according to DeconvNet
:cite:p:`zeiler2014visualizing`.
Parameters
----------
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook. This will be prepended to
the ``layer_map`` defined by the composite.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, layer_map=None, canonizers=None):
if layer_map is None:
layer_map = []
layer_map = layer_map + [
(torch.nn.ReLU, ReLUDeconvNet()),
]
super().__init__(layer_map, canonizers=canonizers)
@register_composite('guided_backprop')
class GuidedBackprop(LayerMapComposite):
'''An explicit composite modifying the gradients of all ReLUs according to GuidedBackprop
:cite:p:`springenberg2015striving`.
Parameters
----------
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook. This will be prepended to
the ``layer_map`` defined by the composite.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, layer_map=None, canonizers=None):
if layer_map is None:
layer_map = []
layer_map = layer_map + [
(torch.nn.ReLU, ReLUGuidedBackprop()),
]
super().__init__(layer_map=layer_map, canonizers=canonizers)
@register_composite('excitation_backprop')
class ExcitationBackprop(LayerMapComposite):
'''An explicit composite implementing the ExcitationBackprop :cite:p:`zhang2016top`.
Parameters
----------
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook. This will be prepended to
the ``layer_map`` defined by the composite.
zero_params: list[str], optional
A list of parameter names that shall set to zero. If `None` (default), no parameters are set to zero.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, stabilizer=1e-6, layer_map=None, zero_params=None, canonizers=None):
if layer_map is None:
layer_map = []
layer_map = layer_map + [
(Sum, Norm(stabilizer=stabilizer)),
(AvgPool, Norm(stabilizer=stabilizer)),
(Linear, ZPlus(stabilizer=stabilizer, zero_params=zero_params)),
]
super().__init__(layer_map=layer_map, canonizers=canonizers)
@register_composite('beta_smooth')
class BetaSmooth(LayerMapComposite):
'''Explicit composite to modify ReLU gradients to smooth softplus gradients :cite:p:`dombrowski2019explanations`.
Used to obtain meaningful surrogate gradients to compute higher order gradients with ReLUs. Equivalent to changing
the gradient to be the (scaled) logistic function (sigmoid).
Parameters
----------
beta_smooth: float, optional
The beta parameter for the softplus gradient (i.e. ``sigmoid(beta * input)``). Defaults to ``10``.
layer_map: list[tuple[tuple[torch.nn.Module, ...], Hook]]
A mapping as a list of tuples, with a tuple of applicable module types and a Hook. This will be prepended to
the ``layer_map`` defined by the composite.
zero_params: list[str], optional
A list of parameter names that shall set to zero. If `None` (default), no parameters are set to zero.
canonizers: list[:py:class:`zennit.canonizers.Canonizer`], optional
List of canonizer instances to be applied before applying hooks.
'''
def __init__(self, beta_smooth=10., layer_map=None, zero_params=None, canonizers=None):
if layer_map is None:
layer_map = []
layer_map = layer_map + [
(torch.nn.ReLU, ReLUBetaSmooth(beta_smooth=beta_smooth)),
]
super().__init__(layer_map=layer_map, canonizers=canonizers)