forked from DeformableFriends/NeuralTracking
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathOrderingMethods
73 lines (66 loc) · 2.42 KB
/
OrderingMethods
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// This Source Code Form is subject to the terms of the Mozilla
// Public License v. 2.0. If a copy of the MPL was not distributed
// with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
#ifndef EIGEN_ORDERINGMETHODS_MODULE_H
#define EIGEN_ORDERINGMETHODS_MODULE_H
#include "SparseCore"
#include "src/Core/util/DisableStupidWarnings.h"
/**
* \defgroup OrderingMethods_Module OrderingMethods module
*
* This module is currently for internal use only
*
* It defines various built-in and external ordering methods for sparse matrices.
* They are typically used to reduce the number of elements during
* the sparse matrix decomposition (LLT, LU, QR).
* Precisely, in a preprocessing step, a permutation matrix P is computed using
* those ordering methods and applied to the columns of the matrix.
* Using for instance the sparse Cholesky decomposition, it is expected that
* the nonzeros elements in LLT(A*P) will be much smaller than that in LLT(A).
*
*
* Usage :
* \code
* #include <Eigen/OrderingMethods>
* \endcode
*
* A simple usage is as a template parameter in the sparse decomposition classes :
*
* \code
* SparseLU<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* \code
* SparseQR<MatrixType, COLAMDOrdering<int> > solver;
* \endcode
*
* It is possible as well to call directly a particular ordering method for your own purpose,
* \code
* AMDOrdering<int> ordering;
* PermutationMatrix<Dynamic, Dynamic, int> perm;
* SparseMatrix<double> A;
* //Fill the matrix ...
*
* ordering(A, perm); // Call AMD
* \endcode
*
* \note Some of these methods (like AMD or METIS), need the sparsity pattern
* of the input matrix to be symmetric. When the matrix is structurally unsymmetric,
* Eigen computes internally the pattern of \f$A^T*A\f$ before calling the method.
* If your matrix is already symmetric (at leat in structure), you can avoid that
* by calling the method with a SelfAdjointView type.
*
* \code
* // Call the ordering on the pattern of the lower triangular matrix A
* ordering(A.selfadjointView<Lower>(), perm);
* \endcode
*/
#ifndef EIGEN_MPL2_ONLY
#include "src/OrderingMethods/Amd.h"
#endif
#include "src/OrderingMethods/Ordering.h"
#include "src/Core/util/ReenableStupidWarnings.h"
#endif // EIGEN_ORDERINGMETHODS_MODULE_H