The MomTrunc R
package computes arbitrary products moments (mean
vector and variance-covariance matrix), for some doubly truncated (and
folded) multivariate distributions. These distributions belong to the
family of selection elliptical distributions, which includes well known
skewed distributions as the unified skew-t distribution (SUT) and its
particular cases. Methods for computing these moments are based on this
seminal work.
Next, we will show some useful functions related to some members of this family, which includes the extended skew-t (EST) and its particular cases, those are, the extended skew-normal (ESN), the skew-t (ST), the skew-normal (SN), symmetric Student’s-t (MVT) and symmetric normal (MVN).
These can be reached in the same fashion that other R
base
distributions, that is, using d
, p
and r
followed by the
distribution string name to get the PDF, CDF and random generating
functions, respectively.
For instance, the extended skew-normal distribution, density values can
be computed using dmvESN()
probabilities with pmvESN()
, and
rmvESN()
functions return generation of random variables from our
distributions of interest.
Available string names are shown in the table below.
Distribution | Option | String |
---|---|---|
Skew-normal | d, p, r | mvSN |
Skew-t | d, p, r | mvST |
Extended Skew-normal | d, p, r | mvESN |
Extended Skew-t | d, p, r | mvEST |
library(MomTrunc)
#Univariate EST case
dmvESN(x = -1,mu = 2,Sigma = 5,lambda = -2,tau = 0.5)
#> [1] 0.1231744
sample = rmvEST(n = 1e5,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu = 4)
print(head(sample))
#> [1] -0.5015923 -0.6642021 0.2891897 3.5957041 2.9828134 3.4525520
#plotting
hist(sample,breaks = 150,freq = FALSE,xlim = c(-15,10),main = "Histogram of EST variates")
curve(expr = dmvEST(x,mu = 2,Sigma = 5,lambda = -2,tau = 0.5,nu = 4),
from = -15,to = 10,n = 200,lwd = 2,col = 4,add = TRUE)
#Multivariate case
mu = c(0.1,0.2,0.3,0.4)
Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
lambda = c(-2,0,1,2)
#One observation
dmvSN(x = c(-2,-1,0,1),mu,Sigma,lambda) #Skew-normal
#> [1] 0.003279037
rmvST(n = 10,mu,Sigma,lambda,nu = 2) #Skew-t
#> [,1] [,2] [,3] [,4]
#> [1,] 0.35393287 0.18670145 0.7951902 0.3964539
#> [2,] -1.22145843 1.98821902 2.2555133 2.4771210
#> [3,] 0.11505972 0.18907948 0.2638879 0.4822362
#> [4,] -0.79663450 1.12417008 1.2132558 -0.3534125
#> [5,] -0.27912920 0.17194797 0.1671234 0.3730229
#> [6,] 0.27243028 -0.01265475 0.9086517 0.3656542
#> [7,] 0.41908397 0.77848822 0.3260464 0.7753323
#> [8,] 0.78939078 0.74624772 1.3954601 0.5453789
#> [9,] 0.03073276 0.65275698 1.2502771 0.3931312
#> [10,] 0.47251536 0.17043266 1.7512018 0.7576431
#Many observations as matrix
x = matrix(rnorm(4*10),ncol = 4,byrow = TRUE)
dmvST(x = x,mu,Sigma,lambda,nu = 2) #Skew-t
#> [1] 7.255175e-07 2.994456e-04 3.493918e-03 3.356577e-06 2.428353e-03
#> [6] 3.762044e-05 2.284900e-02 1.217553e-02 3.003915e-02 1.311547e-06
# Probability between some points
lower = rep(-5,4)
upper = c(-1,0,2,5)
pmvSN(lower,upper,mu,Sigma,lambda) #Skew-normal
#> [1] 0.123428
pmvST(lower,upper,mu,Sigma,lambda,nu=2) #Skew-t
#> [1] 0.1335012
The pmvSN()
and pmvESN()
functions offer the option to return the
logarithm in base 2 of the probability, useful when the true probability
is too small for the machine precision. These functions above use
methods in Genz (1992) through the mvtnorm
package (linked directly to
our C++
functions) and Cao et al. (2019) through the package
tlrmvnmvt
.
For this purpose, we call the function meanvarTMD()
which returns the
mean vector and variance-covariance matrix for some doubly truncated
skew-elliptical distributions. It supports the -variate Normal,
Skew-normal (SN), Extended Skew-normal (ESN) and Unified Skew-normal
(SUN) as well as the Student’s-t, Skew-t (ST), Extended Skew-t (EST) and
Unified Skew-t (SUT) distribution. The distribution to be used is set by
the argument dist
. Next, we present some sample codes.
a = c(-0.8,-0.7,-0.6)
b = c(0.5,0.6,0.7)
mu = c(0.1,0.2,0.3)
Sigma = matrix(data = c(1,0.2,0.3,0.2,1,0.4,0.3,0.4,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
# Theoretical value
value1 = meanvarTMD(a,b,mu,Sigma,dist="normal")
#MC estimate
MC11 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal") #by defalut n = 10000
MC12 = MCmeanvarTMD(a,b,mu,Sigma,dist="normal",n = 10^5) #more precision
# Now works for for any nu>0
value2 = meanvarTMD(a,b,mu,Sigma,dist = "t",nu = 0.87)
value3 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),dist = "SN")
value4 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),nu = 4,dist = "ST")
value5 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
value6 = meanvarTMD(a,b,mu,Sigma,lambda = c(-2,0,1),tau = 1,nu = 4,dist = "EST")
#Skew-unified Normal (SUN) and Skew-unified t (SUT) distributions
Lambda = matrix(c(1,0,2,-3,0,-1),3,2) #A skewness matrix p times q
Gamma = matrix(c(1,-0.5,-0.5,1),2,2) #A correlation matrix q times q
tau = c(-1,2) #A vector of extension parameters of dim q
value7 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,dist = "SUN")
value8 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = c(-1,2),Gamma = Gamma,nu = 4,dist = "SUT")
#The ESN and EST as particular cases of the SUN and SUT for q=1
Lambda = matrix(c(-2,0,1),3,1)
Gamma = 1
value9 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = 1,Gamma = Gamma,dist = "SUN")
value10 = meanvarTMD(a,b,mu,Sigma,lambda = Lambda,tau = 1,Gamma = Gamma,nu = 4,dist = "SUT")
round(value5$varcov,2) == round(value9$varcov,2)
#> [,1] [,2] [,3]
#> [1,] TRUE TRUE TRUE
#> [2,] TRUE TRUE TRUE
#> [3,] TRUE TRUE TRUE
round(value6$varcov,2) == round(value10$varcov,2)
#> [,1] [,2] [,3]
#> [1,] TRUE TRUE TRUE
#> [2,] TRUE TRUE TRUE
#> [3,] TRUE TRUE TRUE
As noted in the codes above, it is possible to obtain the moments by
Monte Carlo approximation through the MCmeanvarTMD()
function.
Finally, the momentsTMD
provides the product moment for some truncated
multivariate distributions. For instance, in order to compute the moment
𝔼[Y13Y21Y32 | a1≤Y1≤b1, a2≤Y2≤b2, a3≤Y3≤b3],
for
Y = (Y1,Y2,Y3)⊤ ∼ ESN3(μ,Σ,λ,τ),
we run the following code:
momentsTMD(kappa = c(3,1,2),lower = a,upper = b,mu,Sigma,lambda = c(-2,0,1),tau = 1,dist = "ESN")
#> k1 k2 k3 E[k]
#> 1 0 0 0 1.0000000000
#> 2 1 0 0 -0.1955214032
#> 3 2 0 0 0.1604269300
#> 4 3 0 0 -0.0737276819
#> 5 0 1 0 -0.0284407326
#> 6 1 1 0 0.0075618650
#> 7 2 1 0 -0.0052312893
#> 8 3 1 0 0.0027692663
#> 9 0 0 1 0.1125134640
#> 10 1 0 1 -0.0041546757
#> 11 2 0 1 0.0130889137
#> 12 3 0 1 -0.0030069873
#> 13 0 1 1 0.0048928388
#> 14 1 1 1 -0.0012302466
#> 15 2 1 1 0.0008848539
#> 16 3 1 1 -0.0004097346
#> 17 0 0 2 0.1390876665
#> 18 1 0 2 -0.0249750438
#> 19 2 0 2 0.0219172190
#> 20 3 0 2 -0.0096157104
#> 21 0 1 2 -0.0026900254
#> 22 1 1 2 0.0008924818
#> 23 2 1 2 -0.0005106163
#> 24 3 1 2 0.0003672320
Note that some other lower order moments involved in the computation are also returned.
Functions for the folded cases are also offered to the users. The
analogous functions meanvarFMD()
, momentsFMD()
are used for the mean
and variance-covariance matrix, and arbitrary product moments,
respectively. Besides, the cdfFMD()
computes the cdf. The available
distributions are normal, Student-t, SN and ESN being set by the
argument dist
. Some sample codes are shown next.
mu = c(0.1,0.2,0.3,0.4)
Sigma = matrix(data = c(1,0.2,0.3,0.1,0.2,1,0.4,-0.1,0.3,0.4,1,0.2,0.1,-0.1,0.2,1),
nrow = length(mu),ncol = length(mu),byrow = TRUE)
#cdf
cdfFMD(x = c(0.5,0.2,1.0,1.3),mu,Sigma,lambda = c(-2,0,2,1),dist = "SN")
#> [1] 0.02794654
#Mean and variance-covariance matrix
meanvarFMD(mu,Sigma,dist = "t",nu = 4)
#> $mean
#> [,1]
#> [1,] 1.003746
#> [2,] 1.014938
#> [3,] 1.033438
#> [4,] 1.059027
#>
#> $EYY
#> [,1] [,2] [,3] [,4]
#> [1,] 2.010000 1.316949 1.367027 1.335528
#> [2,] 1.316949 2.040000 1.430244 1.338320
#> [3,] 1.367027 1.430244 2.090000 1.392964
#> [4,] 1.335528 1.338320 1.392964 2.160000
#>
#> $varcov
#> [,1] [,2] [,3] [,4]
#> [1,] 1.0024938 0.2982090 0.3297167 0.2725335
#> [2,] 0.2982090 1.0099010 0.3813678 0.2634737
#> [3,] 0.3297167 0.3813678 1.0220049 0.2985250
#> [4,] 0.2725335 0.2634737 0.2985250 1.0384615
#Product moment c(2,0,1,2)
momentsFMD(kappa = c(2,0,1,2),mu,Sigma,lambda = c(-2,0,2,1),tau = 1,dist = "ESN")
#> k1 k2 k3 k4 E[k]
#> 1 2 0 1 2 1.3147576
#> 2 1 0 1 2 1.0309879
#> 3 0 0 1 2 1.2496227
#> 4 2 0 0 2 1.1854733
#> 5 1 0 0 2 0.9932095
#> 6 0 0 0 2 1.3074975
#> 7 2 0 1 1 0.8707904
#> 8 1 0 1 1 0.6921804
#> 9 0 0 1 1 0.8518643
#> 10 2 0 0 1 0.8261674
#> 11 1 0 0 1 0.6949156
#> 12 0 0 0 1 0.9196535
#> 13 2 0 1 0 0.8847480
#> 14 1 0 1 0 0.7128806
#> 15 0 0 1 0 0.8925955
#> 16 2 0 0 0 0.8956343
#> 17 1 0 0 0 0.7535822
#> 18 0 0 0 0 1.0000000
Cao, J., Genton, M. G., Keyes, D. E., & Turkiyyah, G. M. “Exploiting Low Rank Covariance Structures for Computing High-Dimensional Normal and Student- t Probabilities” (2019) https://marcgenton.github.io/2019.CGKT.manuscript.pdf
Galarza, C. E., Lin, T. I., Wang, W. L., & Lachos, V. H. (2021). On moments of folded and truncated multivariate Student-t distributions based on recurrence relations. Metrika, 84(6), 825-850.
Galarza-Morales, C. E., Matos, L. A., Dey, D. K., & Lachos, V. H. (2022a). “On moments of folded and doubly truncated multivariate extended skew-normal distributions.” Journal of Computational and Graphical Statistics, 1-11 doi:10.1080/10618600.2021.2000869.
Galarza, C. E., Matos, L. A., Castro, L. M., & Lachos, V. H. (2022b). Moments of the doubly truncated selection elliptical distributions with emphasis on the unified multivariate skew-t distribution. Journal of Multivariate Analysis, 189, 104944 doi:10.1016/j.jmva.2021.104944.
Genz, A. (1992), “Numerical computation of multivariate normal probabilities,” Journal of Computational and Graphical Statistics, 1, 141-149.
Kan, R., & Robotti, C. (2017). On moments of folded and truncated multivariate normal distributions. Journal of Computational and Graphical Statistics, 26(4), 930-934.