Skip to content

Files

Failed to load latest commit information.

Latest commit

 Cannot retrieve latest commit at this time.

History

History
 
 

modular-transformers

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Using the modular_converter linter

pip install libcst is a must!

sh examples/modular-transformers/convert_examples.sh to get the converted outputs

The modular converter is a new linter specific to transformers. It allows us to unpack inheritance in python to convert a modular file like modular_gemma.py into a single model single file.

Examples of possible usage are available in the examples/modular-transformers, or modular_gemma for a full model usage.

python utils/modular_model_converter.py --files_to_parse "/Users/arthurzucker/Work/transformers/examples/modular-transformers/modular_my_new_model2.py"

How it works

We use the libcst parser to produce an AST representation of the modular_xxx.py file. For any imports that are made from transformers.models.modeling_xxxx we parse the source code of that module, and build a class dependency mapping, which allows us to unpack the modularerence dependencies.

The code from the modular file and the class dependency mapping are "merged" to produce the single model single file. We use ruff to automatically remove the potential duplicate imports.

Why we use libcst instead of the native AST?

AST is super powerful, but it does not keep the docstring, comment or code formatting. Thus we decided to go with libcst