forked from instadeepai/Mava
-
Notifications
You must be signed in to change notification settings - Fork 0
/
rec_iql.py
641 lines (530 loc) · 23.3 KB
/
rec_iql.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
# Copyright 2022 InstaDeep Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import time
from typing import Any, Callable, Dict, Tuple
import chex
import flashbax as fbx
import hydra
import jax
import jax.lax as lax
import jax.numpy as jnp
import optax
from chex import PRNGKey
from colorama import Fore, Style
from flashbax.buffers.flat_buffer import TrajectoryBuffer
from flax.core.scope import FrozenVariableDict
from flax.linen import FrozenDict
from jax import Array, tree
from jumanji.types import TimeStep
from omegaconf import DictConfig, OmegaConf
from rich.pretty import pprint
from mava.evaluator import ActorState, get_eval_fn, get_num_eval_envs
from mava.networks import RecQNetwork, ScannedRNN
from mava.systems.q_learning.types import (
ActionSelectionState,
ActionState,
LearnerState,
Metrics,
QNetParams,
TrainState,
Transition,
)
from mava.types import MarlEnv, Observation
from mava.utils import make_env as environments
from mava.utils.checkpointing import Checkpointer
from mava.utils.config import check_total_timesteps
from mava.utils.jax_utils import (
switch_leading_axes,
unreplicate_batch_dim,
unreplicate_n_dims,
)
from mava.utils.logger import LogEvent, MavaLogger
from mava.wrappers import episode_metrics
def init(
cfg: DictConfig,
) -> Tuple[
Tuple[MarlEnv, MarlEnv],
RecQNetwork,
optax.GradientTransformation,
TrajectoryBuffer,
LearnerState,
MavaLogger,
PRNGKey,
]:
"""Initialize system by creating the envs, networks etc."""
logger = MavaLogger(cfg)
key = jax.random.PRNGKey(cfg.system.seed)
devices = jax.devices()
def replicate(x: Any) -> Any:
"""First replicate the update batch dim then put on devices."""
x = tree.map(lambda y: jnp.broadcast_to(y, (cfg.system.update_batch_size, *y.shape)), x)
return jax.device_put_replicated(x, devices)
env, eval_env = environments.make(cfg)
action_dim = env.action_dim
num_agents = env.num_agents
key, q_key = jax.random.split(key, 2)
# Shape legend:
# T: Time
# B: Batch
# N: Agent
# Make dummy inputs to init recurrent Q network -> need shape (T, B, N, ...)
init_obs = env.observation_spec.generate_value() # (N, ...)
# (B, T, N, ...)
init_obs_batched = tree.map(lambda x: x[jnp.newaxis, jnp.newaxis, ...], init_obs)
init_term_or_trunc = jnp.zeros((1, 1, 1), dtype=bool) # (T, B, 1)
init_x = (init_obs_batched, init_term_or_trunc) # pack the RNN dummy inputs
# (B, N, ...)
init_hidden_state = ScannedRNN.initialize_carry(
(cfg.arch.num_envs, num_agents), cfg.network.hidden_state_dim
)
# Making recurrent Q network
pre_torso = hydra.utils.instantiate(cfg.network.q_network.pre_torso)
post_torso = hydra.utils.instantiate(cfg.network.q_network.post_torso)
q_net = RecQNetwork(
pre_torso,
post_torso,
action_dim,
cfg.network.hidden_state_dim,
)
q_params = q_net.init(q_key, init_hidden_state, init_x) # epsilon defaults to 0
q_target_params = q_net.init(q_key, init_hidden_state, init_x) # ensure parameters are separate
# Pack Q network params
params = QNetParams(q_params, q_target_params)
# Making optimiser and state
opt = optax.chain(
optax.clip_by_global_norm(cfg.system.max_grad_norm),
optax.adam(learning_rate=cfg.system.q_lr, eps=1e-5),
)
opt_state = opt.init(params.online)
# Distribute params, opt states and hidden states across all devices
params = replicate(params)
opt_state = replicate(opt_state)
init_hidden_state = replicate(init_hidden_state)
# Create dummy transition
init_acts = env.action_spec.generate_value() # (N,)
init_transition = Transition(
obs=init_obs, # (N, ...)
action=init_acts,
reward=jnp.zeros((num_agents,), dtype=float),
terminal=jnp.zeros((1,), dtype=bool), # one flag for all agents
term_or_trunc=jnp.zeros((1,), dtype=bool),
next_obs=init_obs,
)
# Initialise trajectory buffer
rb = fbx.make_trajectory_buffer(
# n transitions gives n-1 full data points
sample_sequence_length=cfg.system.sample_sequence_length,
period=1, # sample any unique trajectory
add_batch_size=cfg.arch.num_envs,
sample_batch_size=cfg.system.sample_batch_size,
max_length_time_axis=cfg.system.buffer_size,
min_length_time_axis=cfg.system.min_buffer_size,
)
buffer_state = rb.init(init_transition)
buffer_state = replicate(buffer_state)
# Keys to reset env
n_keys = cfg.arch.num_envs * cfg.arch.n_devices * cfg.system.update_batch_size
key_shape = (cfg.arch.n_devices, cfg.system.update_batch_size, cfg.arch.num_envs, -1)
key, reset_key = jax.random.split(key)
reset_keys = jax.random.split(reset_key, n_keys)
reset_keys = jnp.reshape(reset_keys, key_shape)
# Get initial state and timestep per-device
env_state, first_timestep = jax.pmap( # devices
jax.vmap( # update_batch_size
jax.vmap(env.reset), # num_envs
axis_name="batch",
),
axis_name="device",
)(reset_keys)
first_obs = first_timestep.observation
first_term_or_trunc = first_timestep.last()[..., jnp.newaxis]
first_term = (1 - first_timestep.discount[..., 0, jnp.newaxis]).astype(bool)
# Initialise env steps and training steps
t0_act = jnp.zeros((cfg.arch.n_devices, cfg.system.update_batch_size), dtype=int)
t0_train = jnp.zeros((cfg.arch.n_devices, cfg.system.update_batch_size), dtype=int)
# Keys passed to learner
first_keys = jax.random.split(key, (cfg.arch.n_devices * cfg.system.update_batch_size))
first_keys = first_keys.reshape((cfg.arch.n_devices, cfg.system.update_batch_size, -1))
# Initial learner state.
learner_state = LearnerState(
first_obs,
first_term,
first_term_or_trunc,
init_hidden_state,
env_state,
t0_act,
t0_train,
opt_state,
buffer_state,
params,
first_keys,
)
return (env, eval_env), q_net, opt, rb, learner_state, logger, key
def make_update_fns(
cfg: DictConfig,
env: MarlEnv,
q_net: RecQNetwork,
opt: optax.GradientTransformation,
rb: TrajectoryBuffer,
) -> Callable[[LearnerState[QNetParams]], Tuple[LearnerState[QNetParams], Tuple[Metrics, Metrics]]]:
"""Create the update function for the Q-learner."""
# ---- Acting functions ----
def select_eps_greedy_action(
action_selection_state: ActionSelectionState, obs: Observation, term_or_trunc: Array
) -> Tuple[ActionSelectionState, Array]:
"""Select action to take in epsilon-greedy way. Batch and agent dims are included."""
params, hidden_state, t, key = action_selection_state
eps = jnp.maximum(
cfg.system.eps_min, 1 - (t / cfg.system.eps_decay) * (1 - cfg.system.eps_min)
)
obs = tree.map(lambda x: x[jnp.newaxis, ...], obs)
term_or_trunc = tree.map(lambda x: x[jnp.newaxis, ...], term_or_trunc)
next_hidden_state, eps_greedy_dist = q_net.apply(
params, hidden_state, (obs, term_or_trunc), eps
)
new_key, explore_key = jax.random.split(key, 2)
action = eps_greedy_dist.sample(seed=explore_key)
action = action[0, ...] # (1, B, N) -> (B, N)
next_action_selection_state = ActionSelectionState(
params, next_hidden_state, t + cfg.arch.num_envs, new_key
)
return next_action_selection_state, action
def action_step(action_state: ActionState, _: Any) -> Tuple[ActionState, Dict]:
"""Selects action, steps env, stores timesteps in rb and repacks the parameters."""
# Unpack
action_selection_state, env_state, buffer_state, obs, terminal, term_or_trunc = action_state
# select the actions to take
next_action_selection_state, action = select_eps_greedy_action(
action_selection_state, obs, term_or_trunc
)
# step env with selected actions
next_env_state, next_timestep = jax.vmap(env.step)(env_state, action)
# Get reward
reward = next_timestep.reward
transition = Transition(
obs, action, reward, terminal, term_or_trunc, next_timestep.extras["real_next_obs"]
)
# Add dummy time dim
transition = tree.map(lambda x: x[:, jnp.newaxis, ...], transition)
next_buffer_state = rb.add(buffer_state, transition)
# Next obs and term_or_trunc for learner state
next_obs = next_timestep.observation
# make compatible with network input and transition storage in next step
next_terminal = (1 - next_timestep.discount[..., 0, jnp.newaxis]).astype(bool)
next_term_or_trunc = next_timestep.last()[..., jnp.newaxis]
# Repack
new_act_state = ActionState(
next_action_selection_state,
next_env_state,
next_buffer_state,
next_obs,
next_terminal,
next_term_or_trunc,
)
return new_act_state, next_timestep.extras["episode_metrics"]
# ---- Training functions ----
def prep_inputs_to_scannedrnn(obs: Observation, term_or_trunc: chex.Array) -> chex.Array:
"""Prepares the inputs to the RNN network for either getting q values or the
eps-greedy distribution.
Mostly swaps leading axes because the replay buffer outputs (B, T, ... )
and the RNN takes in (T, B, ...).
"""
hidden_state = ScannedRNN.initialize_carry(
(cfg.system.sample_batch_size, obs.agents_view.shape[2]), cfg.network.hidden_state_dim
)
# the rb outputs (B, T, ... ) the RNN takes in (T, B, ...)
obs = switch_leading_axes(obs) # (B, T) -> (T, B)
term_or_trunc = switch_leading_axes(term_or_trunc) # (B, T) -> (T, B)
obs_term_or_trunc = (obs, term_or_trunc)
return hidden_state, obs_term_or_trunc
def q_loss_fn(
q_online_params: FrozenVariableDict,
obs: Array,
term_or_trunc: Array,
action: Array,
target: Array,
) -> Tuple[Array, Metrics]:
# axes switched here to scan over time
hidden_state, obs_term_or_trunc = prep_inputs_to_scannedrnn(obs, term_or_trunc)
# get online q values of all actions
_, q_online = q_net.apply(
q_online_params, hidden_state, obs_term_or_trunc, method="get_q_values"
)
q_online = switch_leading_axes(q_online) # (T, B, ...) -> (B, T, ...)
# get the q values of the taken actions and remove extra dim
q_online = jnp.squeeze(
jnp.take_along_axis(q_online, action[..., jnp.newaxis], axis=-1), axis=-1
)
q_error = jnp.square(q_online - target)
q_loss = jnp.mean(q_error) # mse
# pack metrics for logging
loss_info = {
"q_loss": q_loss,
"mean_q": jnp.mean(q_online),
"mean_target": jnp.mean(target),
}
return q_loss, loss_info
def update_q(
params: QNetParams, opt_states: optax.OptState, data_full: Transition, t_train: int
) -> Tuple[QNetParams, optax.OptState, Metrics]:
"""Update the Q parameters."""
# Get data aligned with current/next timestep
data = tree.map(lambda x: x[:, :-1, ...], data_full)
data_next = tree.map(lambda x: x[:, 1:, ...], data_full)
obs = data.obs
term_or_trunc = data.term_or_trunc
reward = data.reward
action = data.action
# The three following variables all come from the same time step.
# They are stored and accessed in this way because of the `AutoResetWrapper`.
# At the end of an episode `data.next_obs` and `data_next.obs` will be
# different, which is why we need to store both. Thus `data.next_obs`
# aligns with the `terminal` from `data_next`.
next_obs = data.next_obs
next_term_or_trunc = data_next.term_or_trunc
next_terminal = data_next.terminal
# Scan over each sample
hidden_state, next_obs_term_or_trunc = prep_inputs_to_scannedrnn(
next_obs, next_term_or_trunc
)
# eps defaults to 0
_, next_online_greedy_dist = q_net.apply(
params.online, hidden_state, next_obs_term_or_trunc
)
_, next_q_vals_target = q_net.apply(
params.target, hidden_state, next_obs_term_or_trunc, method="get_q_values"
)
# Get the greedy action
next_action = next_online_greedy_dist.mode() # (T, B, ...)
# Double q-value selection
next_q_val = jnp.squeeze(
jnp.take_along_axis(next_q_vals_target, next_action[..., jnp.newaxis], axis=-1), axis=-1
)
next_q_val = switch_leading_axes(next_q_val) # (T, B, ...) -> (B, T, ...)
# TD Target
target_q_val = reward + (1.0 - next_terminal) * cfg.system.gamma * next_q_val
# Update Q function.
q_grad_fn = jax.grad(q_loss_fn, has_aux=True)
q_grads, q_loss_info = q_grad_fn(params.online, obs, term_or_trunc, action, target_q_val)
# Mean over the device and batch dimension.
q_grads, q_loss_info = lax.pmean((q_grads, q_loss_info), axis_name="device")
q_grads, q_loss_info = lax.pmean((q_grads, q_loss_info), axis_name="batch")
q_updates, next_opt_state = opt.update(q_grads, opt_states)
next_online_params = optax.apply_updates(params.online, q_updates)
if cfg.system.hard_update:
next_target_params = optax.periodic_update(
next_online_params, params.target, t_train, cfg.system.update_period
)
else:
next_target_params = optax.incremental_update(
next_online_params, params.target, cfg.system.tau
)
# Repack params and opt_states.
next_params = QNetParams(next_online_params, next_target_params)
return next_params, next_opt_state, q_loss_info
def train(
train_state: TrainState[QNetParams], _: Any
) -> Tuple[TrainState[QNetParams], Metrics]:
"""Sample, train and repack."""
# unpack and get keys
buffer_state, params, opt_states, t_train, key = train_state
next_key, buff_key = jax.random.split(key, 2)
# sample
data = rb.sample(buffer_state, buff_key).experience
# learn
next_params, next_opt_states, q_loss_info = update_q(params, opt_states, data, t_train)
# Repack.
next_train_state = TrainState(
buffer_state, next_params, next_opt_states, t_train + 1, next_key
)
return next_train_state, q_loss_info
# ---- Act-train loop ----
scanned_act = lambda state: lax.scan(action_step, state, None, length=cfg.system.rollout_length)
scanned_train = lambda state: lax.scan(train, state, None, length=cfg.system.epochs)
def update_step(
learner_state: LearnerState[QNetParams], _: Any
) -> Tuple[LearnerState[QNetParams], Tuple[Metrics, Metrics]]:
"""Interact, then learn."""
# unpack and get random keys
(
obs,
terminal,
term_or_trunc,
hidden_state,
env_state,
time_steps,
train_steps,
opt_state,
buffer_state,
params,
key,
) = learner_state
new_key, act_key, train_key = jax.random.split(key, 3)
# Select actions, step env and store transitions
action_selection_state = ActionSelectionState(
params.online, hidden_state, time_steps, act_key
)
action_state = ActionState(
action_selection_state, env_state, buffer_state, obs, terminal, term_or_trunc
)
final_action_state, metrics = scanned_act(action_state)
# Sample and learn
train_state = TrainState(
final_action_state.buffer_state, params, opt_state, train_steps, train_key
)
final_train_state, losses = scanned_train(train_state)
next_learner_state = LearnerState(
final_action_state.obs,
final_action_state.terminal,
final_action_state.term_or_trunc,
final_action_state.action_selection_state.hidden_state,
final_action_state.env_state,
final_action_state.action_selection_state.time_steps,
final_train_state.train_steps,
final_train_state.opt_state,
final_action_state.buffer_state,
final_train_state.params,
new_key,
)
return next_learner_state, (metrics, losses)
pmaped_update_step = jax.pmap(
jax.vmap(
lambda state: lax.scan(update_step, state, None, length=cfg.system.scan_steps),
axis_name="batch",
),
axis_name="device",
donate_argnums=0,
)
return pmaped_update_step
def run_experiment(cfg: DictConfig) -> float:
# Add runtime variables to config
cfg.logger.system_name = "rec_iql"
cfg.arch.n_devices = len(jax.devices())
cfg = check_total_timesteps(cfg)
# Number of env steps before evaluating/logging.
steps_per_rollout = int(cfg.system.total_timesteps // cfg.arch.num_evaluation)
# Multiplier for a single env/learn step in an anakin system
anakin_steps = cfg.arch.n_devices * cfg.system.update_batch_size
# Number of env steps in one anakin style update.
anakin_act_steps = anakin_steps * cfg.arch.num_envs * cfg.system.rollout_length
# Number of steps to do in the scanned update method (how many anakin steps).
cfg.system.scan_steps = int(steps_per_rollout / anakin_act_steps)
pprint(OmegaConf.to_container(cfg, resolve=True))
# Initialise system and make learning/evaluation functions
(env, eval_env), q_net, opt, rb, learner_state, logger, key = init(cfg)
update = make_update_fns(cfg, env, q_net, opt, rb)
cfg.system.num_agents = env.num_agents
key, eval_key = jax.random.split(key)
def eval_act_fn(
params: FrozenDict, timestep: TimeStep, key: chex.PRNGKey, actor_state: ActorState
) -> Tuple[chex.Array, ActorState]:
"""The acting function that get's passed to the evaluator.
A custom function is needed for epsilon-greedy acting.
"""
hidden_state = actor_state["hidden_state"]
term_or_trunc = timestep.last()
net_input = (timestep.observation, term_or_trunc[..., jnp.newaxis])
net_input = tree.map(lambda x: x[jnp.newaxis], net_input) # add batch dim to obs
next_hidden_state, eps_greedy_dist = q_net.apply(params, hidden_state, net_input)
action = eps_greedy_dist.sample(seed=key).squeeze(0)
return action, {"hidden_state": next_hidden_state}
evaluator = get_eval_fn(eval_env, eval_act_fn, cfg, absolute_metric=False)
if cfg.logger.checkpointing.save_model:
checkpointer = Checkpointer(
metadata=cfg, # Save all config as metadata in the checkpoint
model_name=cfg.logger.system_name,
**cfg.logger.checkpointing.save_args, # Checkpoint args
)
# Create an initial hidden state used for resetting memory for evaluation
eval_batch_size = get_num_eval_envs(cfg, absolute_metric=False)
eval_hs = ScannedRNN.initialize_carry(
(jax.device_count(), eval_batch_size, cfg.system.num_agents),
cfg.network.hidden_state_dim,
)
max_episode_return = -jnp.inf
best_params = copy.deepcopy(unreplicate_batch_dim(learner_state.params.online))
# Main loop:
for eval_idx, t in enumerate(
range(steps_per_rollout, int(cfg.system.total_timesteps + 1), steps_per_rollout)
):
# Learn loop:
start_time = time.time()
learner_state, (metrics, losses) = update(learner_state)
jax.block_until_ready(learner_state)
# Log:
# Add learn steps here because anakin steps per second is learn + act steps
# But we also want to make sure we're counting env steps correctly so
# learn steps is not included in the loop counter.
elapsed_time = time.time() - start_time
eps = jnp.maximum(
cfg.system.eps_min, 1 - (t / cfg.system.eps_decay) * (1 - cfg.system.eps_min)
)
final_metrics, ep_completed = episode_metrics.get_final_step_metrics(metrics)
final_metrics["steps_per_second"] = steps_per_rollout / elapsed_time
loss_metrics = losses
logger.log({"timestep": t, "epsilon": eps}, t, eval_idx, LogEvent.MISC)
if ep_completed:
logger.log(final_metrics, t, eval_idx, LogEvent.ACT)
logger.log(loss_metrics, t, eval_idx, LogEvent.TRAIN)
# Evaluate:
key, eval_key = jax.random.split(key)
eval_keys = jax.random.split(eval_key, cfg.arch.n_devices)
eval_params = unreplicate_batch_dim(learner_state.params.online)
eval_metrics = evaluator(eval_params, eval_keys, {"hidden_state": eval_hs})
jax.block_until_ready(eval_metrics)
logger.log(eval_metrics, t, eval_idx, LogEvent.EVAL)
episode_return = jnp.mean(eval_metrics["episode_return"])
# Save best actor params.
if cfg.arch.absolute_metric and max_episode_return <= episode_return:
best_params = copy.deepcopy(eval_params)
max_episode_return = episode_return
# Checkpoint:
if cfg.logger.checkpointing.save_model:
# Save checkpoint of learner state
unreplicated_learner_state = unreplicate_n_dims(learner_state) # type: ignore
checkpointer.save(
timestep=t,
unreplicated_learner_state=unreplicated_learner_state,
episode_return=episode_return,
)
eval_performance = float(jnp.mean(eval_metrics[cfg.env.eval_metric]))
# Measure absolute metric.
if cfg.arch.absolute_metric:
eval_keys = jax.random.split(key, cfg.arch.n_devices)
eval_batch_size = get_num_eval_envs(cfg, absolute_metric=True)
eval_hs = ScannedRNN.initialize_carry(
(jax.device_count(), eval_batch_size, cfg.system.num_agents),
cfg.network.hidden_state_dim,
)
abs_metric_evaluator = get_eval_fn(eval_env, eval_act_fn, cfg, absolute_metric=True)
eval_metrics = abs_metric_evaluator(best_params, eval_keys, {"hidden_state": eval_hs})
logger.log(eval_metrics, t, eval_idx, LogEvent.ABSOLUTE)
logger.stop()
return eval_performance
@hydra.main(
config_path="../../../configs/default",
config_name="rec_iql.yaml",
version_base="1.2",
)
def hydra_entry_point(cfg: DictConfig) -> float:
"""Experiment entry point."""
# Allow dynamic attributes.
OmegaConf.set_struct(cfg, False)
# Run experiment.
eval_performance = run_experiment(cfg)
print(f"{Fore.CYAN}{Style.BRIGHT}IDQN experiment completed{Style.RESET_ALL}")
return eval_performance
if __name__ == "__main__":
hydra_entry_point()