Skip to content
/ pyvacy Public
forked from ChrisWaites/pyvacy

Differentially Private Optimization for PyTorch ๐Ÿ‘๐Ÿ™…โ€โ™€๏ธ

License

Notifications You must be signed in to change notification settings

cgebest/pyvacy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

9 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation


PyVacy: Privacy Algorithms for PyTorch

Basically TensorFlow Privacy, but for PyTorch.

DP-SGD implementation modeled after techniques presented within Deep Learning with Differential Privacy and A General Approach to Adding Differential Privacy to Iterative Training Procedures.

Example Usage

from pyvacy import optim, analysis, sampling

training_parameters = {
    'N': len(train_dataset),
    # An upper bound on the L2 norm of each gradient update.
    # A good rule of thumb is to use the median of the L2 norms observed
    # throughout a non-private training loop.
    'l2_norm_clip': 1.0,
    # A coefficient used to scale the standard deviation of the noise applied to gradients.
    'noise_multiplier': 1.1,
    # Each example is given probability of being selected with minibatch_size / N.
    # Hence this value is only the expected size of each minibatch, not the actual. 
    'minibatch_size': 128,
    # Each minibatch is partitioned into distinct groups of this size.
    # The smaller this value, the less noise that needs to be applied to achieve
    # the same privacy, and likely faster convergence. Although this will increase the runtime.
    'microbatch_size': 1,
    # The usual privacy parameter for (ฮต,ฮด)-Differential Privacy.
    # A generic selection for this value is 1/(N^1.1), but it's very application dependent.
    'delta': 1e-5,
    # The number of minibatches to process in the training loop.
    'iterations': 15000,
}

model = nn.Sequential(...)
optimizer = optim.DPSGD(params=model.parameters(), **training_parameters) 
epsilon = analysis.epsilon(**training_parameters)
loss_function = ...

minibatch_loader, microbatch_loader = sampling.get_data_loaders(**training_parameters)
for X_minibatch, y_minibatch in minibatch_loader(train_dataset):
    optimizer.zero_grad()
    for X_microbatch, y_microbatch in microbatch_loader(TensorDataset(X_minibatch, y_minibatch)):
        optimizer.zero_microbatch_grad()
        loss = loss_function(model(X_microbatch), y_microbatch)
        loss.backward()
        optimizer.microbatch_step()
    optimizer.step()

Tutorials

mnist.py

Implements a basic classifier for identifying which digit a given MNIST image corresponds to. The model achieves a test set classification accuracy of 96.7%. The architecture and results achieved are inspired by the corresponding tutorial within TensorFlow privacy.

Disclaimer

Do NOT use the contents of this repository in applications which handle sensitive data. The author accepts no liability for privacy infringements - use the contents of this repository solely at your own discretion.

About

Differentially Private Optimization for PyTorch ๐Ÿ‘๐Ÿ™…โ€โ™€๏ธ

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%