-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlinkage2.m
executable file
·456 lines (408 loc) · 15.9 KB
/
linkage2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
function Z = linkage(Y, method, pdistArg, varargin)
%LINKAGE Create hierarchical cluster tree.
% Z = LINKAGE(X), where X is a matrix with two or more rows, creates a
% matrix Z defining a tree of hierarchical clusters of the rows of X.
% Clusters are based on the single linkage algorithm using Euclidean
% distances between the rows of X. Rows of X correspond to observations
% and columns to variables.
%
% Z = LINKAGE(X,METHOD) creates a hierarchical cluster tree using the
% the specified algorithm. The available methods are:
%
% 'single' --- nearest distance (default)
% 'complete' --- furthest distance
% 'average' --- unweighted average distance (UPGMA) (also known as
% group average)
% 'weighted' --- weighted average distance (WPGMA)
% 'centroid' --- unweighted center of mass distance (UPGMC)
% 'median' --- weighted center of mass distance (WPGMC)
% 'ward' --- inner squared distance (min variance algorithm)
%
% Z = LINKAGE(X,METHOD,METRIC) performs clustering based on the distance
% metric METRIC between the rows of X. METRIC can be any of the distance
% measures accepted by the PDIST function. The default is 'euclidean'.
% For more information on PDIST and available distances, type HELP PDIST.
% The 'centroid', 'median', and 'ward' methods are intended only for the
% Euclidean distance metric.
%
% Z = LINKAGE(X,METHOD,PDIST_INPUTS) enables you to pass extra input
% arguments to PDIST. PDIST_INPUTS should be a cell array containing
% input arguments to be passed to PDIST.
%
% Z = LINKAGE(X,METHOD,METRIC,'savememory',VALUE) specifies the value for
% the optional argument 'savememory'. VALUE is a string 'on' or 'off'.
% When VALUE is 'on', LINKAGE performs clustering without computing the
% distance matrix internally, so it usually requires less memory for data
% with large number of observations. VALUE 'on' requires both of the
% following two conditions to be satisfied:
% * METHOD is 'ward', 'centroid', or 'median'.
% * METRIC is 'euclidean'.
% When the above two conditions are satisfied, the default is 'on' when
% the number of columns in X is not greater than 20, or the machine
% doesn't have enough memory to save the distance matrix.
%
% Z = LINKAGE(Y) and Z = LINKAGE(Y,METHOD) are alternative syntaxes that
% accept a vector representation Y of a distance matrix. Y may be a
% distance matrix as computed by PDIST, or a more general dissimilarity
% matrix conforming to the output format of PDIST.
%
% The output matrix Z contains cluster information. Z has size m-1 by 3,
% where m is the number of observations in the original data. Column 1
% and 2 of Z contain cluster indices linked in pairs to form a binary
% tree. The leaf nodes are numbered from 1 to m. They are the singleton
% clusters from which all higher clusters are built. Each newly-formed
% cluster, corresponding to Z(i,:), is assigned the index m+i, where m is
% the total number of initial leaves. Z(i,1:2) contains the indices of
% the two component clusters which form cluster m+i. There are m-1 higher
% clusters which correspond to the interior nodes of the output
% clustering tree. Z(i,3) contains the corresponding linkage distances
% between the two clusters which are merged in Z(i,:), e.g. if there are
% total of 30 initial nodes, and at step 12, cluster 5 and cluster 7 are
% combined and their distance at this time is 1.5, then row 12 of Z will
% be (5,7,1.5). The newly formed cluster will have an index 12+30=42. If
% cluster 42 shows up in a latter row, that means this newly formed
% cluster is being combined again into some bigger cluster.
%
% The 'centroid' and 'median' methods can produce a cluster tree that is
% not monotonic. This occurs when the distance from the union of two
% clusters, r and s, to a third cluster is less than the distance between
% r and s. In such a case, in a dendrogram drawn with the default
% orientation, the path from a leaf to the root node takes some downward
% steps. You may want to use another method when that happens.
%
% You can provide the output Z to other functions including DENDROGRAM to
% display the tree, CLUSTER to assign points to clusters, INCONSISTENT to
% compute inconsistent measures, and COPHENET to compute the cophenetic
% correlation coefficient.
%
% Examples:
% % Compute four clusters of the Fisher iris data using Ward linkage
% % and ignoring species information, and see how the cluster
% % assignments correspond to the three species.
% load fisheriris
% Z = linkage(meas,'ward','euclidean');
% c = cluster(Z,'maxclust',4);
% crosstab(c,species)
% dendrogram(Z)
%
% % Create a hierarchical cluster tree for a data with 20000
% % observations using Ward linkage. If you set the value of
% % 'savememory' to 'off', you may get an out-of-memory error if your
% % machine doesn't have enough memory to hold the distance matrix.
% X = rand(20000,3);
% Z = linkage(X,'ward','euclidean','savememory', 'on')
%
% See also PDIST, INCONSISTENT, COPHENET, DENDROGRAM, CLUSTER,
% CLUSTERDATA, KMEANS, SILHOUETTE.
% Copyright 1993-2011 The MathWorks, Inc.
% $Revision: 1.1.8.10 $
% Check for size and type of input
[k, n] = size(Y);
m = ceil(sqrt(2*n)); % m = (1+sqrt(1+8*n))/2, but works for large n
if k>1 % data matrix input
if nargin<2
method = 'single';
end
if nargin<3
pdistArg = 'euclidean';
end
nargs = 3;
else % distance matrix input or bad input
nargs = nargin;
end
if nargs>=3 % should be data input
if k == 1 && m*(m-1)/2 == n
warning(message('stats:linkage:CallingPDIST'));
end
if k < 2
error(message('stats:linkage:TooFewDistances'));
end
passX = true; % the input is the data matrix.
if ischar(pdistArg)
pdistArg = {pdistArg};
elseif ~iscell(pdistArg)
error(message('stats:linkage:BadPdistArgs'));
end
else % should be distance input
passX = false;
if n < 1
error(message('stats:linkage:TooFewDistances'));
end
if k ~= 1 || m*(m-1)/2 ~= n
error(message('stats:linkage:BadSize'));
end
end
% Selects appropriate method
if nargs == 1 % set default switch to be 'si'
methodStr = 'single';
else
% Preferred Synonym
methods = {'single', 'nearest'; ...
'complete', 'farthest'; ...
'average', 'upgma'; ...
'weighted', 'wpgma'; ...
'centroid', 'upgmc'; ...
'median', 'wpgmc'; ...
'ward''s', 'incremental'};
[methodStr,s] = internal.stats.getParamVal(method,methods(:),'METHOD');
if s>size(methods,1)
methodStr = methods{s-size(methods,1), 1};
end
end
method = methodStr(1:2);
% The recursive distance updates for the three methods 'cetroid','median'
% and 'ward' only make sense when the distance matrix contains Euclidean
% distances (which will be squared) or the distance metric is Euclidean
nonEuc = false;
isCeMeWa = false;
if any(strcmp(method,{'ce' 'me' 'wa'}))
isCeMeWa = true;
if ~passX % The distance matrix is passed
if (any(~isfinite(Y)) || ~iseuclidean(Y))
warning(message('stats:linkage:NotEuclideanMatrix', methodStr));
end
else % the data matrix is passed
if (~isempty(pdistArg))
if (~ischar (pdistArg{1}))
nonEuc = true;
else
% method may be a known name or the name of a user function
distMethods = {'euclidean'; 'minkowski';'mahalanobis'};
i = find(strncmpi(pdistArg{1}, distMethods, length(pdistArg{1})));
if length(i) > 1
error(message('stats:linkage:BadDistance', pdistArg{ 1 }));
elseif (isempty(i) || i == 3 || ...
(i == 2 && length(pdistArg) ~= 1 && isscalar(pdistArg{2}) && pdistArg{2} ~= 2) )
nonEuc = true;
end
end
end
if (nonEuc)
warning(message('stats:linkage:NotEuclideanMethod', methodStr));
end
end
end
%Parse the memory efficient option 'Savememory'
pnames ={'savememory'};
dflts = {[]};
[memEff] = internal.stats.parseArgs(pnames, dflts, varargin{:});
if ~isempty(memEff)
memEff = internal.stats.getParamVal(memEff,{'on'; 'off'},'SaveMemory');
memEff = strcmp(memEff,'on');
end
% The memeory efficient option can be valid only when the following three
% conditions are satisfied:
% * The first input argument is data matrix
% * The linkage is either 'centroid, 'median' or 'ward'.
% * The distance metric is euclidean
if passX && isCeMeWa && ~nonEuc
if isempty(memEff) %Set the default choice for memEff
if n<=20
memEff = true;
else
memEff = false;
end
try
tempDistMat=zeros(1,k*(k-1)/2,class(Y));
catch ME
if (strcmp(ME.identifier,'MATLAB:nomem') || ...
strcmp(ME.identifier,'MATLAB:pmaxsize'));
memEff = true;
else % Otherwise, just let the error propagate.
throw(ME);
end
end
clear tempDistMat;
end
else
if ~isempty(memEff) && memEff
warning(message('stats:linkage:IgnoringMemEff'));
end
memEff = false;
end
if exist('linkagemex','file')==3
% call mex file
if passX
if (memEff)
%call the memory efficient algorithm
Z = linkagemex(Y',method,{'euc'},memEff); %note that Y is transposed here
else
Z = linkagemex(Y,method,pdistArg, memEff);
end
else
Z = linkagemex(Y,method);
end
if any(strcmp(method,{'av' 'wa' 'co' 'we'}))
% if 'ave','ward', 'com' or 'weighted average' is used, we need to
% re-arrange the rows in Z matrix by sorting the third rows of Z matrix.
Z = rearrange(Z);
end
else
warning(message('stats:linkage:NoMexFilePresent'));
if passX
Y = pdist(Y,pdistArg{:});
end
% optional old linkage function (use if mex file is not present)
Z = linkageold(Y,method);
end
% Check if the tree is monotonic and warn if not. Z is built so that the rows
% are in non-decreasing height order, thus we can look at the heights in order
% to determine monotonicity, rather than having to explicitly compare each parent
% with its children.
zdiff = diff(Z(:,3));
if any(zdiff<0)
% With distances that are computed recursively (average, weighted, median,
% centroid, ward's), errors can accumulate. Two nodes that are really
% at the same height in the tree may have had their heights calculated in
% different ways, making them differ by +/- small amounts. Make sure that
% doesn't produce false non-monotonicity warnings.
negLocs = find(zdiff<0);
if any(abs(zdiff(negLocs)) > eps(Z(negLocs,3))) % eps(the larger of the two values)
warning(message('stats:linkage:NonMonotonicTree', methodStr));
end
end
% %re-arrange the Z matrix by sorting the third rows of Z matrix.
% function Z2 = rearrange(Z)
% %Get indices to sort Z
% [~,idx] = sort(Z(:,3));
%
% % Get indices in the reverse direction
% revidx(idx) = 1:length(idx);
%
% % Get vector of desired cluster numbers for Z2
% nrows=size(Z,1);
% v2 = [1:nrows+1,nrows+1+revidx];
%
% % Put Z2 into sorted order, without renumbering the clusters
% Z0 = Z(idx,:);
% Z2 = Z0;
% % Renumber the clusters
% Z2(:,1:2) = v2(Z2(:,1:2));
%
% % Make sure the lower-numbered cluster is in column 1
% t = Z2(:,1)>Z2(:,2);
% Z2(t,1:2) = Z2(t,[2 1]);
%%%%%%%%%%%%%%%%%%%%%%%%% OLD LINKAGE FUNCTION %%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Z = linkageold(Y, method)
%LINKAGEOLD Create hierarchical cluster tree using only MATLAB code.
n = size(Y,2);
m = ceil(sqrt(2*n)); % (1+sqrt(1+8*n))/2, but works for large n
if isa(Y,'single')
Z = zeros(m-1,3,'single'); % allocate the output matrix.
else
Z = zeros(m-1,3); % allocate the output matrix.
end
% during updating clusters, cluster index is constantly changing, R is
% a index vector mapping the original index to the current (row, column)
% index in Y. N denotes how many points are contained in each cluster.
N = zeros(1,2*m-1);
N(1:m) = 1;
n = m; % since m is changing, we need to save m in n.
R = 1:n;
% Square the distances so updates are easier. The cluster heights will be
% square-rooted back to the original scale after everything is done.
if any(strcmp(method,{'ce' 'me' 'wa'}))
Y = Y .* Y;
end
for s = 1:(n-1)
if strcmp(method,'av')
p = (m-1):-1:2;
I = zeros(m*(m-1)/2,1);
I(cumsum([1 p])) = 1;
I = cumsum(I);
J = ones(m*(m-1)/2,1);
J(cumsum(p)+1) = 2-p;
J(1)=2;
J = cumsum(J);
W = N(R(I)).*N(R(J));
[v, k] = min(Y./W);
else
[v, k] = min(Y);
end
i = floor(m+1/2-sqrt(m^2-m+1/4-2*(k-1)));
j = k - (i-1)*(m-i/2)+i;
Z(s,:) = [R(i) R(j) v]; % update one more row to the output matrix A
% Update Y. In order to vectorize the computation, we need to compute
% all the indices corresponding to cluster i and j in Y, denoted by I
% and J.
I1 = 1:(i-1); I2 = (i+1):(j-1); I3 = (j+1):m; % these are temp variables
U = [I1 I2 I3];
I = [I1.*(m-(I1+1)/2)-m+i i*(m-(i+1)/2)-m+I2 i*(m-(i+1)/2)-m+I3];
J = [I1.*(m-(I1+1)/2)-m+j I2.*(m-(I2+1)/2)-m+j j*(m-(j+1)/2)-m+I3];
switch method
case 'si' % single linkage
Y(I) = min(Y(I),Y(J));
case 'co' % complete linkage
Y(I) = max(Y(I),Y(J));
case 'av' % average linkage
Y(I) = Y(I) + Y(J);
case 'we' % weighted average linkage
Y(I) = (Y(I) + Y(J))/2;
case 'ce' % centroid linkage
K = N(R(i))+N(R(j));
Y(I) = (N(R(i)).*Y(I)+N(R(j)).*Y(J)-(N(R(i)).*N(R(j))*v)./K)./K;
case 'me' % median linkage
Y(I) = (Y(I) + Y(J))/2 - v /4;
case 'wa' % Ward's linkage
Y(I) = ((N(R(U))+N(R(i))).*Y(I) + (N(R(U))+N(R(j))).*Y(J) - ...
N(R(U))*v)./(N(R(i))+N(R(j))+N(R(U)));
end
J = [J i*(m-(i+1)/2)-m+j];
Y(J) = []; % no need for the cluster information about j.
% update m, N, R
m = m-1;
N(n+s) = N(R(i)) + N(R(j));
R(i) = n+s;
R(j:(n-1))=R((j+1):n);
end
if any(strcmp(method,{'ce' 'me' 'wa'}))
Z(:,3) = sqrt(Z(:,3));
end
Z(:,[1 2])=sort(Z(:,[1 2]),2);
function Z = rearrange(Z)
%Get indices to sort Z
[~,idx] = sort(Z(:,3));
% Get indices in the reverse direction
revidx(idx) = 1:length(idx);
% Get vector of desired cluster numbers for Z2
nrows=size(Z,1);
v2 = [1:nrows+1,nrows+1+revidx];
% Put Z2 into sorted order, without renumbering the clusters
Z = Z(idx,:);
% Renumber the clusters
Z(:,1:2) = v2(Z(:,1:2));
% Make sure the lower-numbered cluster is in column 1
t = Z(:,1)>Z(:,2);
Z(t,1:2) = Z(t,[2 1]);
% is Z in chronological order?
if any((Z(:,2) >= (1:nrows)'+nrows+1))
Z = fixnonchronologicalZ(Z);
t = Z(:,1)>Z(:,2);
Z(t,1:2) = Z(t,[2 1]);
end
function Z = fixnonchronologicalZ(Z)
% Fixes a binary tree that has branches defined in a non-chronological order
nl = size(Z,1)+1; % number of leaves
nb = size(Z,1); % number of branches
last = nl; % last defined node, we start only with leaves
for i = 1:nb
tn = nl+i; %this node
if any(Z(i,[1,2])>last)
% this node (tn) uses nodes not defined yet, find a node (h) that
% does use nodes already defined so we can interchange them:
h = find(all(Z(i+1:end,[1 2])<=last,2),1)+i;
% change nodes:
Z([i h],:) = Z([h i],:);
nn = nl+h; % new node
% change references to such nodes
%Z([find(Z(1:2*nb) == nn,1) find(Z(1:2*nb) == tn,1)]) = [tn nn];
%try
tonn=find(Z(1:2*nb) == tn,1);
Z([find(Z(1:2*nb) == nn,1)]) = [tn];
%catch,keyboard;end
if(~isempty(tonn))
Z(tonn) = [nn];
end
end
last = tn;
end