-
Notifications
You must be signed in to change notification settings - Fork 5
/
indoor67_main_singleclass.m
executable file
·709 lines (662 loc) · 32.4 KB
/
indoor67_main_singleclass.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
% The same as indoor67_main.m, but it only runs the 'bowling'
% category.
global ds;
myaddpath;
finishedinit=false;
try,finishedinit=dsload('.ds.finishedinit');catch,end
if(~finishedinit)
dscd('.ds');
% Edit the following with your path to the indoor67 data. This
% directory should contain directories for airport_inside, artstudio,
% etc.
indoor67path='/code/data/indoor67/';
% optionally, set the web-accessible path for the same directory--
% i.e. the path such that [weburl '/airport_inside/{imagename}'] can
% be used to download the image. This is only used in displays;
% if you just set it to the empty string, the code will still work,
% but some links in the displays will be broken.
weburl='';
% set an output directory (on a filesystem that's accessible to all matlab's)
dssetout('/PATH/TO/OUTPUT');
% If you're running distributed and want to use SSH to send data between
% nodes, use the following to set a directory where dswork can cache
% files locally. On Starcluster, /mnt/sgeadmin is a good place (assuming
% you run your jobs as the user sgeadmin).
%dssetlocaldir('/mnt/sgeadmin/');
% reset the data store
dsdelete('ds.*');
% Set the number of parallel workers:
njobs=12;
% Set the amount of memory on each machine; dswork will estimate
% how many jobs can be run simultaneously on each machine
% based on this value. Note that if you're running jobs alongside
% the master, leave about 8GB for the master process
ds.conf.mempermachine=59;
% The machine where qsub can be run, or 'local' if you want to run on
% a single machine:
targmachine='local';
% Any additional configuration to pass to dsmapredopen();
distprocconf=struct();
ds.masterscriptname=mfilename;
if(~exist('dataset_indoor67_jpg.mat','file'))
disp(['WARNING: you are about to create jpeg versions of the gifs in the indoor67 data directory. '...
'type ''return'' to continue or ''dbquit'' to cancel.']);
keyboard
preprocessindoor67(indoor67path,{'dataset_indoor67_jpg.mat','dataset_indoor67_test.mat'});
end
testdata=load('dataset_indoor67_test.mat');
setdataset(20,testdata.imgs,indoor67path,testdata.labelnames,weburl);
traindata=load('dataset_indoor67_jpg.mat');
setdataset(19,traindata.imgs,indoor67path,traindata.labelnames,weburl);
if(isfield(ds.conf.gbz{ds.conf.currimset},'imgsurl'))
ds.imgsurl=ds.conf.gbz{ds.conf.currimset}.imgsurl;
end
s = RandStream('mcg16807','Seed',1234)
RandStream.setDefaultStream(s)
ds.conf.params= struct( ...
'ovlweight', 1, ... % use the inter-element communication scheme to set the weights.
'negsperpos', 8, ... % during element training, the number of images we hard-mine
... % negatives from during for each positive training image.
'maxpixels',300000,... % large images will be downsampled to this many pixels.
'minpixels',300000,... % small images will be upsampled to this many pixels.
'patchCanonicalSize', {[64 64]}, ... % resolution for each detected patch.
'scaleIntervals', 8, ... % number of pyramid levels per scale.
'sBins', 8, ... % pixel width/height for HOG cells
'useColor', 1, ... % include Lab tiny images in the descriptor for a patch.
'whitening', 1, ... % whiten the patch features
'normbeforewhit', 1, ... % mean-subtract and normalize features before applying whitening
'normalizefeats', 1, ... % mean-subtract and normalize features after applying whitening
'graddescfun', @doGradDescentproj, ... % function ptr for the optimization function. It gets called
... % on each round of the optimization, including during
... % initialization. See doGradDescentproj.m
'stepsize', .05, ... % step size used by the optimizer
'beta', 1, ... % beta value for the optimization
'optimizationComputeLimit',1500,... % maximum number of vector-matrix multiplies that the
... % optimizer may perform on each training iteration
'samplingOverlapThreshold', 0.6, ... % patches sampled initially can't have overlap larger
... % than this value.
'samplingNumPerIm',20,... % sample this many patches per image.
'multperim', 1, ... % allow multiple detections per image
'nmsOverlapThreshold', 0.4 ... % overlap threshold for NMS during detection.
)
if(dsbool(ds.conf.params,'ovlweight'))
ds.conf.params.lambdainit=.004;% lambda value for the optimization used during the first
% training round (gets increased proportional to the number
% of samples at later training rounds)
else
ds.conf.params.lambdainit=.02; % without the inter-element communication, everything
% has a higher weight, and so we need to increase the
% regularization.
end
classtorun='bowling';
[~,classidxtorun]=ismember(classtorun,ds.conf.gbz{ds.conf.currimset}.labelnames);
%pick which images to use out of the dataset
imgs=ds.imgs{ds.conf.currimset};
ds.myiminds=1:numel(imgs.label);
% ds.roundinds stores the indices of the images to use at each iteration of training
[~,cls]=ismember(ds.imgs{ds.conf.currimset}.label(ds.myiminds),unique(ds.imgs{ds.conf.currimset}.label));
imgsbyclass=distributeby(ds.myiminds(:),cls);
rp=randperm(numel(ds.myiminds));
% the first 3 rounds of training are just used to set the initial bandwidth, so we
% use a very small subset of them.
% actually it's pretty stupid that this takes 3 rounds; it could be done in 1 except
% that doing so would generate tons of useless feature vectors in the current pipeline.
ds.roundinds{1}=ds.myiminds(rp(1:20));
ds.roundinds{2}=ds.myiminds(rp(21:60));
ds.roundinds{3}=ds.myiminds(rp(61:120));
% evenly divide the rest of the images. Note that the classes aren't quite balanced,
% so the last round deals with extra/missing images.
total_imgsbyclass = imgsbyclass;
for(i=4:8)
ds.roundinds{i}=[];
for(j=1:numel(imgsbyclass))
if(i==8)
ul=numel(imgsbyclass{j});
else
ul=ceil(numel(total_imgsbyclass{j})/5);
end
ds.roundinds{i}=[ds.roundinds{i};imgsbyclass{j}(1:ul)];
imgsbyclass{j}(1:ul)=[];
end
ds.roundinds{i}=ds.roundinds{i}(randperm(numel(ds.roundinds{i})));
end
dssave;
if(~dsmapredisopen())
dsmapredopen(njobs,targmachine,distprocconf);
disp('waiting 10 sec for mapreducers to start...')
pause(10)
end
% Generate the whitening matrix based on 1500 randomly sampled images.
ds.aggcov.myiminds=ds.myiminds(rp(1:min(numel(rp),1500)));;
dssave;
dscd('ds.aggcov');
dsrundistributed('aggregate_covariance',{'ds.myiminds'},struct('allatonce',1,'noloadresults',1,'maxperhost',max(1,floor(ds.conf.mempermachine/4))));
total=0;
clear featsum dotsum;
dsload('ds.n');
for(i=1:numel(ds.n))
if(isempty(ds.n{i})),continue;end
total=total+dsload(['ds.n{' num2str(i) '}'],'clear');
if(~exist('dotsum','var'))
dotsum=dsload(['ds.dotsum{' num2str(i) '}'],'clear');
else
dotsum=dotsum+dsload(['ds.dotsum{' num2str(i) '}'],'clear');
end
if(~exist('featsum','var'))
featsum=dsload(['ds.featsum{' num2str(i) '}'],'clear');
else
featsum=featsum+dsload(['ds.featsum{' num2str(i) '}'],'clear');
end
if(any(isnan(dotsum(:)))||any(isnan(featsum(:))))
keyboard;
end
disp(i);
end
covmat=(dotsum./total-(featsum'./total)*(featsum./total));
covmat=covmat+.01*eye(size(covmat,1));
dscd('.ds');
ds.datamean=featsum./total;
disp('performing matrix square root...');
ds.invcovmat=inv(covmat);
ds.whitenmat=sqrtm(ds.invcovmat);
clear featsum dotsum total;
clear covmat;
dsdelete('ds.aggcov');
end
ds.finishedinit=true;
dssave;
initmodes=false;
try,initmodes=dsload('.ds.initmodes');catch,end
% This is the chunk of code that actually samples the patches that will become the 'modes',
% and sets up the positive/negative classes for each patch.
if(~initmodes)
disp('sampling positive patches');
dscd('.ds');
setdataset(19);
dsdelete('ds.round');
dsdelete('ds.sample');
dsdelete('ds.classperbatch');
dsdelete('ds.detectors');
dsdelete('ds.initFeats');
dsdelete('ds.initPatches');
dsdelete('ds.batchfordetr');
dsdelete('ds.trainingrounds');
dsdelete('ds.negprobperlabel');
ulabels=unique(imgs.label);
for(i=1:numel(ulabels))
ds.negprobperlabel(ulabels(i))=ds.conf.params.negsperpos*sum(imgs.label(ds.myiminds)==ulabels(i))/sum(imgs.label(ds.myiminds)~=ulabels(i));
end
extrparams=ds.conf.params;
ds.sample=struct();
% Use this line to sample patches evenly from every image.
% ds.sample.initInds=ds.myiminds;
% alternatively, sample from just a few categories. If you just want to sample candidate patches from a few categories,
% note that you also need to sample some from negative images, just so that each patch detector will start with a few negatives.
% I recommend around 4,000 negative patches to start off.
positive_indices = ds.myiminds(imgs.label(ds.myiminds) == classidxtorun);
negative_indices = ds.myiminds(imgs.label(ds.myiminds) ~= classidxtorun);
rp=randperm(numel(negative_indices));
ds.sample.initInds=[positive_indices, negative_indices(rp(1:200))];
dsrundistributed('[ds.sample.patches{dsidx}, ds.sample.feats{dsidx}]=sampleRandomPatchesbb(ds.sample.initInds(dsidx),20);',{'ds.sample.initInds'},struct('maxperhost',max(1,floor(ds.conf.mempermachine/4))));
% divide the sampled patches into batches (two images' worth of sampled
% patches per batch). The batches are purely for efficiency, specifically
% to limit the number of files that get written. Note that each
% batch needs to have a single class label.
batch_size=40;
allpatches=cell2mat(ds.sample.patches(:));
allfeats=cell2mat(ds.sample.feats(:));
negfeats=[];
negpatches=[];
% optionally, get rid of any patches that you want to treat as purely
% negative
remove=ismember(allpatches(:,7),negative_indices);
negpatches=allpatches(remove,:);
allpatches(remove,:)=[];
negfeats=allfeats(remove,:);
allfeats(remove,:)=[];
patchlabel=imgs.label(allpatches(:,7));
ids=(1:size(allfeats,1))';
[allpatches,allfeats,ids,patchlabel]=distributeby(allpatches,allfeats,ids,patchlabel);
classperbatch={};
for(i=1:numel(allpatches))
batchpartition=c(bsxfun(@times,ones(batch_size,1),1:ceil(size(allpatches{i},1)/batch_size)));
[allpatches{i},allfeats{i},ids{i}]=distributeby(allpatches{i},allfeats{i},ids{i},batchpartition(1:size(allpatches{i},1)));
classperbatch{i}=repmat(patchlabel(i),size(allfeats{i},1),1);
end
allpatches=cat(1,allpatches{:});
allfeats=cat(1,allfeats{:});
ids=cat(1,ids{:});
ds.classperbatch=cell2mat(classperbatch(:));
initPatches=[cell2mat(allpatches);negpatches];
disp(['sampled ' num2str(size(initPatches,1)) ' patches']);
ds.initFeats=[cell2mat(allfeats);negfeats];
% convert the patch features for each batch into a detector structure.
ds.detectors=cellfun(@(x,y,z) struct('w',x,'b',y,'id',z),...
allfeats,...
cellfun(@(x) ones(size(x,1),1),allpatches,'UniformOutput',false),...
ids,...
'UniformOutput',false)';
initPatches(1:numel(cell2mat(ids)),6)=(1:numel(cell2mat(ids)))';
ds.initPatches=initPatches;
% batchfordetr is an n-by-2 detector for the n detectors: column 1 is
% a detector id, column 2 is the index of the batch containing it.
ds.batchfordetr=[cell2mat(ids) cell2mat(cellfun(@(x,y) x*0+y,ids,c(num2cell(1:numel(ids))),'UniformOutput',false))];
dssave();
dsdelete('ds.sample')
if(exist([ds.masterscriptname '_wait'],'file'))
keyboard;
end
% initialize the set of detectors: this will only update the b value.
ds.initFeats=[];
runset=ds.sys.distproc.availslaves;
dsrundistributed('autoclust_opt_init',{'ds.detectors'},struct('noloadresults',1,'maxperhost',max(1,floor(ds.conf.mempermachine/4)),'forcerunset',runset));
end
ds.initmodes=true;
dssave;
trainingrounds=false;
try,trainingrounds=dsload('.ds.trainingrounds');catch,end
if(~trainingrounds)
dscd('.ds');
setdataset(19);
dsdelete('ds.gendpoolfeats');
roundid=1;
while(isfield(ds,['round' num2str(roundid)]))
roundid=roundid+1;
end
uniquelabels=1:numel(ds.conf.gbz{ds.conf.currimset}.labelnames);
ds.uniquelabels=uniquelabels(:)';
while(roundid<=(numel(ds.roundinds)))
thisroundmapreduce=false;
try,thisroundmapreduce=dsload('.ds.round.thisroundmapreduce');catch,end
if(~thisroundmapreduce)
dsdelete('ds.round.myiminds');
dsdelete('ds.round.roundid');
dsdelete('ds.round.ndetrounds');
dsdelete('ds.round.lambda');
dsdelete('ds.round.beta');
dsdelete('ds.round.newfeat');
try
dsdelete(['ds.round.newdets{' num2str(roundid) '}{1:' num2str(dssavestatesize('ds.round.newdets',2)) '}']);
catch,end
dsdelete('ds.nextround');
ds.round.myiminds=ds.roundinds{roundid}; % images to run training on
ds.round.ndetrounds=max(roundid-3,1); % the number of real detection rounds we've completed
ds.round.roundid=roundid;
if(~isfield(ds.round,'detrgroup'))
% make a fake clustering for the first few rounds, where every patch gets its own cluster.
ds.round.detrgroup=[ds.batchfordetr(:,1), (1:size(ds.batchfordetr,1))'];
end
if(roundid<=3)
mph=max(1,floor(ds.conf.mempermachine/8));
elseif(roundid<=4)
mph=max(1,floor(ds.conf.mempermachine/2));
else
mph=max(1,floor(ds.conf.mempermachine/1.5));
end
if(mod(roundid,1)==0)
% matlab's memory footprint grows even if it's not using the memory; restarting frees it.
dsmapredrestart;
end
if(roundid>=4)
% increase lambda (the bandwidth) proportional to the number of images we've run detection on.
ds.round.lambda=(roundid-3)*ds.conf.params.lambdainit;
else
% if we're initializing, beta determines how large rho is. Since we initialize on a small
% set, we want to make beta artificially small so that the detector will fire less
% when it starts doing detection for real. This reduces the number of useless patch features
% get generated.
ds.round.beta=ds.conf.params.beta/3;
end
%end
% the main mapreduce that runs detectors on images and sends the detected feature vectors
% to reducers, each of which optimizes one batch of detectors. We use forcerunset to
% make sure each detector is always optimized on the same machine, since these machines
% cache features locally.
dsmapreduce(['detectors=dsload(''ds.round.detectors'')'';'...
'imgs=dsload(''ds.imgs{ds.conf.currimset}'');'...
'dsload(''ds.classperbatch'');dsload(''ds.negprobperlabel'');'...
'posbats=find(imgs.label(ds.round.myiminds(dsidx))==ds.classperbatch);'... % run all detectors whose class matches the class of this image
'negbats=find(imgs.label(ds.round.myiminds(dsidx))~=ds.classperbatch);'...
'negbats=negbats(randsamplewithprob(ds.negprobperlabel(ds.classperbatch(negbats))));'... % run a random subset of the detectors for other classes
'[dets,feats]=detectInIm(effstrcell2mat(detectors([posbats(:); negbats(:)])),'...
'ds.round.myiminds(dsidx),'...
'struct(''thresh'',-.02/dsload(''ds.round.ndetrounds''),'...
'''multperim'',dsload(''ds.round.roundid'')>2,'...
'''flipall'',true));' ...
'ctridx=dsload(''ds.batchfordetr'');'...
'dsload(''ds.round.detrgroup'');'...
'[~,detrgroupord]=ismember(ds.round.detrgroup(:,1),ctridx(:,1));'...
'ovlweight=overlapReweightForImg(dets,[ctridx(:,1) ds.classperbatch(ctridx(:,2)) ds.round.detrgroup(detrgroupord,2)]);'...% ovlweights are the alpha_i,j from the paper
'ds.round.newfeat(1:numel(unique(ctridx(:,2))),dsidx)={struct(''assignedidx'',[],''feat'',[])};'...
'if(~isempty(dets)),'...
'[~,ctrpos]=ismember(dets(:,6),ctridx(:,1));'...
'[dets,feats,ovlweight,outpos]=distributeby(dets,single(feats),ovlweight,ctridx(ctrpos,2));'...
'ds.round.newfeat(outpos,dsidx)=cellfun(@(x,y,z) struct(''assignedidx'',x,''feat'',y,''ovlweights'',z),dets,feats,ovlweight,''UniformOutput'',false);'...
'end']...
,'autoclust_optimize',{'ds.round.myiminds'},'ds.round.newfeat',struct('noloadresults',1,'forcerunset',runset),struct('maxperhost',mph),struct('maxperhost',max(1,floor(ds.conf.mempermachine/4))));
end
ds.round.thisroundmapreduce=true;
dssave;
% deleting prevfeats is optional (and prevents you from backing up the execution
% to a previous round), but they take up a ton of space.
dsdelete('ds.round.prevfeats');
dsdelete('ds.round.component');
dsdelete('ds.nextround.detrgroup');
dsdelete('ds.nextround.reweights');
dsdelete('ds.nextround.detsbyim');
dsdelete('ds.nextround.prevweights');
% Now that we've trained the detectors, we need to re-compute the
% alpha values for each patch.
if(roundid>=4)
% findOverlapping3 finds overlapping clusters--i.e. it performs
% the agglomerative element clustering step described in the paper.
dsrundistributed(['dsload(''ds.classperbatch'');dsload(''ds.batchfordetr'');'...
'if(isempty(find(ds.classperbatch==ds.uniquelabels(dsidx)))),return;end,'...
'[~,~,ds.round.component{dsidx}]='...
'findOverlapping3(''ds.nextround.prevdets'',find(ds.classperbatch==ds.uniquelabels(dsidx)),'...
'[ds.batchfordetr(:,1),ds.classperbatch(ds.batchfordetr(:,2))],'...
'struct(''ndetsforoverlap'',.5,''maxoverlaps'',3,''clusterer'',''agglomerative''))'],'ds.uniquelabels',struct('maxperhost',max(1,floor(ds.conf.mempermachine/3))));
% Construct the detrgroup matrix, which is an two-column matrix, The left column
% is the detector id, the right column specifies which cluster that element
% belongs to.
component=[];
toadd=0;
for(i=1:numel(ds.round.component))
tmpcomponent=ds.round.component{i};
if(numel(tmpcomponent)==0)
continue;
end
tmpcomponent(:,2)=tmpcomponent(:,2)+toadd;
component=[component;tmpcomponent];
toadd=max(component(:,2));
end
[~,cord]=ismember(ds.batchfordetr(:,1),component(:,1));
component=component(cord,:);
ds.nextround.detrgroup=component(:,1:2);
% Collect the detections for each image and compute the alpha values. Note
% that if ds.conf.params.ovlweight is false or doesn't exist, then the
% clustering generated above is ignored and weights are simply assigned
% based on the number of detections for a given element in the image.
detsbyim=cell2mat(dsload('ds.nextround.prevdets','clear')');
[detsbyim,~,ord]=distributeby(detsbyim,detsbyim(:,7));
ds.nextround.detsbyim=detsbyim';
clear detsbyim;
dsrundistributed(['ctridx=dsload(''ds.batchfordetr'');'...
'dsload(''ds.classperbatch'');'...
'dsload(''ds.nextround.detrgroup'');'...
'[~,detrgroupord]=ismember(ds.nextround.detrgroup(:,1),ctridx(:,1));'...
'ds.nextround.reweights{dsidx}=overlapReweightForImg(ds.nextround.detsbyim{dsidx},[ctridx(:,1) ds.classperbatch(ctridx(:,2)) ds.nextround.detrgroup(detrgroupord,2)]);'],'ds.nextround.detsbyim');
ds.nextround.detsbyim={};
dsload('ds.nextround.prevdets');
reweights=mat2cell(invertdistributeby(ds.nextround.reweights(:),ord),cellfun(@(x) size(x,1),ds.nextround.prevdets),1);
classfordetr(ds.batchfordetr(:,1))=ds.classperbatch(ds.batchfordetr(:,2));
% The alpha value for the patch that initialized each cluster doesn't
% follow the same rules as everything else, since we don't know when
% the image it was sampled from will actually have detectors run
% on it. Hence, we instead start with a value of 1 and decay
% exponentially toward the mean of the other weights. I don't believe
% this is important in the current implementation, but I haven't really
% tried other approaches to setting this weight.
for(i=1:numel(reweights))
[currdets,currweights,detid,ord]=distributeby(ds.nextround.prevdets{i},reweights{i},ds.nextround.prevdets{i}(:,6));
for(j=1:numel(currdets))
ispos=find(ds.imgs{ds.conf.currimset}.label(currdets{j}(:,7))==c(classfordetr(currdets{j}(:,6))));
if(ispos(1)~=1)
error('detections got out of order');
end
if(numel(ispos)>1)
currweights{j}(1)=.5^(roundid-4)+(1-.5^(roundid-4))*mean(currweights{j}(ispos(2:end)));
end
end
reweights{i}=invertdistributeby(currweights,ord);
end
ds.nextround.prevweights=reweights(:)';
end
dsdelete(['ds.progressdisplay' num2str(roundid)]);
% Generate a visualization of the progress.
if(roundid>=4)
% select a subset of the batches to display, since there's too many
% detectors overall.
batchestodisp=1:round(numel(unique(ds.batchfordetr(:,2)))/5):numel(unique(ds.batchfordetr(:,2)));
batchestodisp=batchestodisp(1:min(10,numel(batchestodisp)));
dets=cell2mat(dsload(['ds.nextround.prevdets{' num2str(batchestodisp) '}'])');
ovlweights=cell2mat(dsload(['ds.nextround.prevweights{' num2str(batchestodisp) '}'])');
[dets,ovlweights]=distributeby(dets,ovlweights,dets(:,6));
for(i=1:numel(dets))
[~,ord]=sort(dets{i}(:,5),'descend');
ovlweights{i}=ovlweights{i}(ord(1:min(20,size(dets{i},1))));
dets{i}=dets{i}(ord(1:min(20,size(dets{i},1))),:);
end
dets=cell2mat(dets);
ovlweights=cell2mat(ovlweights);
dsup(['ds.progressdisplay' num2str(roundid) '.patchimg'],extractpatches(double(dets)));
conf=struct('dets',dets,'detrord',ds.batchfordetr(ismember(ds.batchfordetr(:,2),batchestodisp),1));
if(dsbool(ds.conf.params,'ovlweight'))
conf.ovlweights=ovlweights;
end
mhprender('patchdisplay.mhp',['ds.progressdisplay' num2str(roundid) '.displayhtml'],conf);
fail=1;while(fail),try
dssave;
fail=0;catch ex,if(fail>5),rethrow(ex);end,fail=fail+1;end,end
dsclear(['ds.progressdisplay' num2str(roundid)]);
end
ds.round=struct();
dsmv('ds.round',['ds.round' num2str(roundid)]);
%optionally, delete the rounds as we go along to save space.
dsdelete(['ds.round' num2str(roundid) '.*']);
dsmv('ds.nextround','ds.round');%keep the stub--it's how we measure progress!
roundid=roundid+1;
end
ds.trainingrounds=true;
dssave;
end
gendpoolfeats=false;
try,gendpoolfeats=dsload('.ds.gendpoolfeats');catch,end
if(~gendpoolfeats)
dscd('.ds');
dsdelete('ds.scores');
dsdelete('ds.finids');
dsdelete('ds.finmodel');
dsdelete('ds.testpoolfeats');
dsdelete('ds.poolfeats');
dsdelete('ds.display_*');
setdataset(19);
% The element training is done. Now we need to select the top elements
% for each class. Note that we perform the selection based on
% ds.newdets, which we obtained by firing the detectors on images they
% hadn't (yet) been trained on, so it's a roughly unbiased estimate
% of their held out accuracy, but the scores from different rounds
% of detections are not comparable.
uniquelabels=1:numel(ds.conf.gbz{ds.conf.currimset}.labelnames);
ds.uniquelabels=uniquelabels(:)';
dsrundistributed(['dsload(''ds.batchfordetr'');dsload(''ds.classperbatch'');dsload(''ds.imgs'');dsload(''ds.roundinds'');'...
'if(sum(ds.classperbatch==ds.uniquelabels(dsidx))==0),return;end,'...
'dsload([''ds.newdets{'' num2str(numel(ds.roundinds)-2:numel(ds.roundinds)) ''}{'' num2str(find(ds.classperbatch(:)''==ds.uniquelabels(dsidx))) ''}'']);'...
'detsbyround={};'...
'for(i=numel(ds.roundinds)-1:numel(ds.roundinds)),'...
'detsbyround{end+1,1}=structcell2mat(ds.newdets(i,:)'');'...
'end,'...
'[ds.finids{dsidx},ds.scores{dsidx}]=greedySelectDetrsCoverage(detsbyround,ds.imgs{ds.conf.currimset}.label==ds.uniquelabels(dsidx),.7,200,struct(''useoverlap'',1));'...
'ds.newdets={}'...
],'ds.uniquelabels',struct('maxperhost',max(1,floor(ds.conf.mempermachine/4))));
% Collect detections from the held out detectors and generate
% a display for each class. Note that this display isn't the same
% as the one on the webpage. This one displays held out detections
% using the greedy ranking, whereas the one on the webpage displays
% detections after training, only includes detections from the
% positive class, and ranks based on the SVM weight vectors that we haven't
% even generated yet.
heldoutdets={};
for(i=numel(ds.roundinds)-2:numel(ds.roundinds))
newdets=cell2mat(dsload(['ds.newdets{' num2str(i) '}{1:' num2str(dssavestatesize('ds.newdets',2)) '}'])');
ds.newdets={};
newdets(~ismember(newdets(:,6),cell2mat(ds.finids(:))),:)=[];
heldoutdets{end+1,1}=newdets;
end
heldoutdets=cell2mat(heldoutdets(:));
[heldoutdets,detid]=distributeby(heldoutdets,heldoutdets(:,6));
for(i=1:numel(ds.finids))
heldoutdetsbyclass=heldoutdets(ismember(detid,ds.finids{i}));
ds.topk{i}=cell2mat(maxkall(heldoutdetsbyclass,5,20));
end
ds.classes=ds.conf.gbz{ds.conf.currimset}.labelnames(:)';
dsrundistributed(['if(isempty(ds.finids{dsidx})),return;end,'...
'dsup([''ds.display_'' ds.classes{dsidx} ''.patchimg''],extractpatches(ds.topk{dsidx}));'...
'conf=struct(''dets'',ds.topk{dsidx},'...
'''detrord'',ds.finids{dsidx},'...
'''message'',{cellfun(@(x) [''score:'' num2str(x)],num2cell(ds.scores{dsidx}),''UniformOutput'',false)});'...
'mhprender(''patchdisplay.mhp'',[''ds.display_'' ds.classes{dsidx} ''.displayhtml''],conf);']...
,{'ds.finids','ds.scores','ds.topk','ds.classes'},struct('noloadresults',true));
% save out the final selected element detectors for easy access.
model=effstrcell2mat(dsload('ds.round.detectors','clear')');
model=selectdetrs2(model,cell2mat(ds.finids(:)));
ds.finmodel=model;
dssave;
% generate a feature vector for each training image in ds.myiminds
dsrundistributed('dsload(''ds.finmodel'');ds.poolfeats{dsidx}=distGenPooledFeats(ds.finmodel,ds.myiminds(dsidx))',{'ds.myiminds'},struct('noloadresults',true));
trainlab=ds.imgs{ds.conf.currimset}.label(ds.myiminds);
% switch to the testing set and
setdataset(20);
ds.mytestinds=1:numel(ds.imgs{ds.conf.currimset}.fullname);
dsrundistributed('dsload(''ds.finmodel'');ds.testpoolfeats{dsidx}=distGenPooledFeats(ds.finmodel,ds.mytestinds(dsidx))',{'ds.mytestinds'},struct('noloadresults',true));
end
ds.gendpoolfeats=true;
dssave;
setdataset(20);
dscd('.ds');
%clear some memory
ds.round=struct();
dsmapredrestart;
% optionally load the ifv features generated by Junega, Vedaldi, Jawahar &
% Zisserman 2013's implementation of ifv. Note that that this takes about
% 5GB of extra memory, since we blindly load a 100,000-dimensional feature
% vector for every image.
if(0)
% Note also we're assuming here that the ifv IMDB order is the same as
% our order (since the ifv output doesn't actually include the IMDB :-/)
% This will be true if the order of directory listings is deterministic,
% since the IMDB gets their file listing in the same way we do. However,
% the madlab docs say that the order returned by dir actually depends on
% the OS.
ifvpermutation=1:10000;
ifvpath='/PATH/TO/IFV';
fils=cleandir([ifvpath '/data/codes/FKtest_comb_train_chunk*']);
for(i=1:numel(fils))
load([ifvpath '/data/codes/' fils(i).name]);
[~,idx]=ismember(index,ifvpermutation);
for(j=1:numel(idx))
trainifvfeats(idx(j),:)=chunk(:,j)';
end
disp(i)
end
ifvkern=trainifvfeats*trainifvfeats';
fils=cleandir([ifvpath '/data/codes/FKtest_comb_test_chunk*']);
for(i=1:numel(fils))
load([ifvpath '/data/codes/' fils(i).name]);
[~,idx]=ismember(index,ifvpermutation);
for(j=1:numel(idx))
testifvFeats(idx(j),:)=chunk(:,j)';
end
disp(i)
end
ifvtestkern=trainifvfeats*testifvFeats';
pfwt=.01;
thresh=.6;
ifvwt=18;
else
ifvkern=0;
ifvtestkern=0;
ifvkern=0;
ifvtestkern=0;
if(dsbool(ds.conf.params,'ovlweight'))
pfwt=.02;
thresh=.5;
ifvwt=0;
else
pfwt=.05;
thresh=.3;
ifvwt=0;
end
end
trainpf2=cell2mat(dsload('ds.poolfeats','clear')');
testpf2=cell2mat(dsload('ds.testpoolfeats','clear')');
% the kernel function for the SVM. It's actually a linear kernel after
% a rectified-linear feature transform.
kernfun=@(x,y) ((max(x+thresh,0))*(max(y+thresh,0))');
% the transformation that happens before the dot product in the kernel.
transfun=@(x) max(x+thresh,0);
% Everything is much more efficient if we work directly with the kernel matrix.
pfkern=kernfun(trainpf2,trainpf2);
kernmat=ifvkern*ifvwt+pfkern*pfwt;
classes=unique(trainlab)
% optionally you can open a matlabpool here, but if your'e using
% dswork your probably already have a lot of matlabs running on this machine.
% This honestly doesn't take that long, though.
% matlabpool open 12
parfor(i=1:numel(classes))
inds=find(trainlab==classes(i));
label=-ones(size(kernmat,1),1);
label(inds)=1;
trainedsvm{i}=svmtrain(label,double([(1:numel(label))' kernmat]),'-s 0 -t 4 -c .1 -h 0');
disp(i)
end
% compute the scores for the testing images.
pftestkern=kernfun(trainpf2,testpf2);
traintestkern=ifvtestkern*ifvwt+pftestkern*pfwt;
testscr=[];
for(i=1:numel(trainedsvm))
testscr(i,:)=(trainedsvm{i}.sv_coef'*traintestkern(trainedsvm{i}.SVs,:)-trainedsvm{i}.rho)*trainedsvm{i}.Label(1);
end
[~,label]=max(testscr,[],1);
truth=ds.imgs{ds.conf.currimset}.label';
% here we print the final performance.
perf=sum(truth==label)./numel(label)
dsdelete('ds.svm');
% Finally we generate heatmaps.
for(i=1:numel(classes))
ds.svm{i}=getMinimalModel2(trainedsvm{i},transfun(trainpf2));
end
allscores=testscr';
dsdelete('ds.dispdets');
dsdelete('ds.easyimages');
dsdelete('ds.errorimages');
prevdets=cell2mat(dsload('ds.round.prevdets','clear')');
prevdets=distributeby(prevdets,prevdets(:,6));
ds.dispdets=cell2mat(maxkall(prevdets(:),5,5));
clear prevdets;
ds.dispdets=ds.dispdets(ismember(ds.dispdets(:,6),ds.finmodel.id),:);
dssave;
% there are two versions of the heatmap: first, we generate heatmaps for
% the most confident correctly-classified images, and then for the most confident
% errors. Note that the code below generates heatmaps for the detections
% that *lowered* the SVM score as well as those that raised it. However, we
% omitted the ones that lowered the detection score from the website since
% they are harder to interpret.
for(disperror=[0 1])
if(disperror)
dscd('.ds.errorimages');
errorval=allscores(sub2ind(size(allscores),(1:size(allscores,1))',label(:)))-allscores(sub2ind(size(allscores),(1:size(allscores,1))',truth(:)));
ds.cls=[truth(:) label(:)]
else
dscd('.ds.easyimages');
for(i=1:size(allscores,1))
[scr,ds.cls(i,:)]=maxk(allscores(i,:),2);
errorval(i)=scr(1)-scr(2);
end
end
[confidence,ds.todisp]=maxk(errorval,100);
ds.transfun=transfun;
setdataset(20);
dsrundistributed(['detrs=dsload(''.ds.finmodel'');svm=dsload(''.ds.svm'');transfun=dsload(''ds.transfun'');'...
'cls=dsload(''ds.cls'');dispdets=dsload(''.ds.dispdets'');dsload(''.ds.imgs'');'...
'im=im2double(getimg(ds.todisp(dsidx)));'...
'ds.origimg{dsidx}=im;'...
'[ds.leftposimg{dsidx},ds.leftnegimg{dsidx}]=dispClassifier('...
'detrs,im,svm{cls(ds.todisp(dsidx),1)},transfun,dispdets,[''ds.display_left_'' num2str(dsidx)],19);'...
'[ds.rightposimg{dsidx},ds.rightnegimg{dsidx}]=dispClassifier('...
'detrs,im,svm{cls(ds.todisp(dsidx),2)},transfun,dispdets,[''ds.display_right_'' num2str(dsidx)],19);'],'ds.todisp',struct('noloadresults',1));
mhprender('errdisp.mhp','ds.errhtml',struct('trueclasses',{ds.conf.gbz{ds.conf.currimset}.labelnames(ds.cls(ds.todisp,1))},'guessclasses',{ds.conf.gbz{ds.conf.currimset}.labelnames(ds.cls(ds.todisp,2))},'confidence',confidence,'iserror',disperror));
dssave;
end
dscd('.ds');
perf=sum(truth==label)./numel(label)