-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathbestInImbb.m
executable file
·156 lines (151 loc) · 5.17 KB
/
bestInImbb.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
% The core of the detection code. Don't call this; call detectInIm instead.
% Note that this supports bounding boxes, but they're not used in the
% indoor67 code.
function [posall,distall,clustidall,featsall,flipall,boxidall]=bestInIm(centers,imid,conf)
global ds;
if(~exist('conf','var'))
conf=struct();
end
conf=overrideConf(ds.conf.params,conf);
if(~dsfield(conf,'thresh'))
conf.thresh=-Inf;
end
if(numel(imid)<=2)
imfull=im2double(getimg(imid));
else
imfull=im2double(imid);
end
noprocess=0;
boxidall=[];
flipall=[];
if(dsfield(conf,'detsforclass'))% the flag indicating that we're using Pascal bounding boxes.
annot=getannot(imid);
bbs=[annot.x1 annot.y1 annot.x2 annot.y2];
classes=[annot.label];
occl=annot.occluded;
difficult=annot.difficult;
boxid=annot.boxid;
flip=zeros(size(bbs,1),1);
bbminsize=[bbs(:,4)-bbs(:,2)+1,bbs(:,3)-bbs(:,1)+1];
if(dsbool(conf,'allowoccluded'))
occl(:)=false;
end
valid=(~occl & ismember(classes,conf.detsforclass) & ~difficult & all(bsxfun(@ge,bbminsize,ds.conf.params.patchCanonicalSize),2));
bbs(~valid,:)=[];
boxid(~valid)=[];
flip(~valid)=[];
else % in this case, we simply specify one bounding box containing the full image.
bbs=[1,1,size(imfull,2),size(imfull,1)];
bbminsize=[bbs(:,4)-bbs(:,2)+1,bbs(:,3)-bbs(:,1)+1];
if(~all(bbminsize>=ds.conf.params.patchCanonicalSize))
bbs=[];
end
boxid=0;
flip=0;
end
if(dsbool(conf,'flipall')) %add a flipped bounding box.
bbs=[bbs;bbs];
boxid=[boxid;boxid];
flip=[flip;ones(size(flip))];
end
if(isempty(bbs))
posall=[];
distall=[];
clustidall=[];
featsall=[];
boxid=[];
return
end
for(bbidx=1:size(bbs,1))
im=imfull(bbs(bbidx,2):bbs(bbidx,4),bbs(bbidx,1):bbs(bbidx,3),:);
if(flip(bbidx)),im=im(:,end:-1:1,:);end
pyramid = constructFeaturePyramid(im, ds.conf.params); % HOG feature pyramid
pcs=round(ds.conf.params.patchCanonicalSize/ds.conf.params.sBins)-2;
pcs(3)=size(pyramid.features{1},3);
pcs(4)=0;
if(numel(imid)>2)
if(~isfield(conf,'imid'))
conf.imid=0
end
else
conf.imid=imid;
end
% unentangling the fieature pyramid gives us 'features', where each row
% is the feature vector for a single patch. levels and indexes specify
% where those patches were in the pyramid, and gradsums tells us the strength
% of the gradient in each patch so we can get rid of empty ones that are likely
% to make our detectors misfire thanks to HOG's normalization.
[features, levels, indexes,gradsums] = unentanglePyramid(pyramid, ...
pcs,conf);
invalid=(gradsums<9);
features(invalid,:)=[];
levels(invalid)=[];
indexes(invalid,:)=[];
gradsums(invalid)=[];
if(dsbool(conf,'multperim'))
% findmatches finds all detections above a certain threshold
[assignedidx, dist, clustid]=findmatches(centers,features,conf.thresh,conf);
else
% assigntoclosest gives us the top detection for each detector.
[assignedidx, dist]=assigntoclosest(centers,features,1);
if(isempty(dist))
clustid=[];
else
clustid=(1:size(centers,1))';
valid=dist>conf.thresh;
assignedidx=assignedidx(valid);
dist=dist(valid);
clustid=clustid(valid);
end
end
patsz=ds.conf.params.patchCanonicalSize;%allsz(resinds(k),:);
fsz=(patsz-2*ds.conf.params.sBins)/ds.conf.params.sBins;
imgs=getimgs();
% convert the pyramid indexes into bounding boxes with pixel coordinates.
pos=pyridx2pos(indexes(assignedidx,:),reshape(levels(assignedidx),[],1),fsz,pyramid);
% if we allow more than one per image, we need to do non-maximum suppresion.
if(dsbool(conf,'multperim'))
pos=[pos.x1 pos.y1 pos.x2 pos.y2];
[pos,assignedidx,dist,clustidl,clustid]=distributeby(pos,assignedidx,dist,clustid,clustid);
for(i=1:numel(pos))
[posinds]=myNms([pos{i} dist{i}],ds.conf.params.nmsOverlapThreshold);
assignedidx{i}=assignedidx{i}(posinds);
dist{i}=dist{i}(posinds);
pos{i}=pos{i}(posinds,:);
clustidl{i}=clustidl{i}(posinds);
end
assignedidx=cell2mat(assignedidx);
dist=cell2mat(dist);
p=cell2mat(pos);
if(isempty(p))
p=zeros(0,4);
end
clear pos;
pos.x1=p(:,1);pos.x2=p(:,3);pos.y1=p(:,2);pos.y2=p(:,4);
clustid=cell2mat(clustidl);
end
feats=features(assignedidx,:);
pos.x1=pos.x1+bbs(bbidx,1)-1;
pos.x2=pos.x2+bbs(bbidx,1)-1;
pos.y1=pos.y1+bbs(bbidx,2)-1;
pos.y2=pos.y2+bbs(bbidx,2)-1;
if(flip(bbidx))
medval=(bbs(bbidx,3)+bbs(bbidx,1))/2;
tmp=medval+(medval-pos.x2);
pos.x2=medval+(medval-pos.x1);
pos.x1=tmp;
end
posall{bbidx,1}=effstr2str(pos);
featsall{bbidx,1}=feats;
distall{bbidx,1}=dist;
clustidall{bbidx,1}=clustid;
boxidall{bbidx,1}=repmat(boxid(bbidx),size(dist,1),1);
flipall{bbidx,1}=repmat(flip(bbidx),size(dist,1),1);
end
posall=str2effstr(cell2mat(posall));
featsall=cell2mat(featsall);
distall=cell2mat(distall);
clustidall=cell2mat(clustidall);
boxidall=cell2mat(boxidall);
flipall=cell2mat(flipall);
end