-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathquick_demo.m
29 lines (25 loc) · 1.21 KB
/
quick_demo.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
myaddpath;
if(~exist(['quick_demo.mat'],'file'))
val=input('warning: need to fetch a pre-trained stuff model (approx 600MB) to the current directory. continue (y/n)?','s');
if(strcmp(val,'y'))
disp('fetching...');
urlwrite('http://graphics.cs.cmu.edu/projects/contextPrediction/quick_demo.mat','./quick_demo.mat');
else
disp('answer was not ''y''--aborting.');
return
end
end
load('quick_demo.mat');
conf.queryimage=queryimage;
conf.predictorimages=predictorimages;
conf.disp=true;
% This is a prediction that was done near the end of clustering these cars; hence,
% we have a good set of cars to use as predictor images, and all of those cars
% come with estimates of the region containing the car.
[hm,bghm,~,~,~,~,~,predicted]=contextpredict(querybbox,predictorbboxes,stuffmodelgmm,certaintymap,conf);
% Alternatively, you can run the prediction without any prior knowledge
% about where the cars are in the predictor images. Note that the score drops.
%[hm,bghm,~,~,~,~,~,predicted]=contextpredict(querybbox,predictorbboxes,stuffmodelgmm,repmat({[]},size(predictorbboxes,1),1),conf);
probs=min(10,max(-10,hm-bghm));
prob=sum(probs(predicted>.3));
disp(['final log likelihood ratio:' num2str(prob)]);