-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathconstructFeaturePyramidForImg.m
executable file
·106 lines (104 loc) · 3.33 KB
/
constructFeaturePyramidForImg.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
function pyramid = constructFeaturePyramidForImg(im, params, levels)
% levels: What level of pyramid to compute the features for.
%
% Author: saurabh.me@gmail.com (Saurabh Singh).
% Heavily modified by cdoersch at cs dot cmu dot edu (Carl Doersch)
sBins = params.sBins;
'constructfeatpyr'
size(im)
I = im;
if(dsfield(params,'imageCanonicalSize'))
canonicalSize = params.imageCanonicalSize;
[IS, canoScale] = convertToCanonicalSize(I, canonicalSize);
else
canonicalSize=min(size(I(:,:,1)));
canoScale=1;
IS=I;
end
size(IS)
[rows, cols, chans] = size(IS);
if chans < 3
I = repmat(I, [1 1 3]);
fprintf('WARNING: Image has < 3 channels, replicating channels\n');
end
numLevels = getNumPyramidLevels(rows, cols, params.scaleIntervals, ...
params.patchCanonicalSize)
scales = getLevelScales(numLevels, params.scaleIntervals);
if nargin < 3 || isempty(levels)
levels = 1 : numLevels;
end
if(dsbool(params,'useColor'))
im2=RGB2Lab(im).*.0025;
if(dsbool(params,'extraColor'))
im2=im2.*25;
end
end
if(dsbool(params,'useColorHists'))
im2=RGB2Lab(im);
end
if(dsbool(params,'patchOnly'))
im2=rgb2gray(im);
end
pyramidLevs = cell(1, numLevels);
histbin=-100:20:100;
histbin(end)=histbin(end)+1;
gradientLevs={};
for i = 1 : length(levels)
lev = levels(i);
I1 = imresize(I, canoScale / scales(lev),'bilinear');
[nrows, ncols, unused_dims] = size(I1);
rowRem = rem(nrows, sBins);
colRem = rem(ncols, sBins);
if rowRem > 0 || colRem > 0
I1 = I1(1:nrows-rowRem, 1:ncols-colRem, :);
end
if(~dsbool(params,'patchOnly'))
if(dsbool(params,'overallnorm'))
feat=features_nonorm(I1,sBins)*.02;
else
feat = features(I1, sBins);
end
[rows,cols,~]=size(feat);
else
rows=round(size(im2,1)/sBins);
cols=round(size(im2,2)/sBins);
end
if(dsbool(params,'patchOnly'))
feat=imresize(im2,[rows cols],'bilinear');
else
feat=feat(:,:,1:31);
if(dsbool(params,'maxmin'))
feat=cat(3,feat(:,:,1:18),max(feat(:,:,1:9),feat(:,:,10:18)),...
min(feat(:,:,1:9),feat(:,:,10:18)),feat(:,:,28:end));
end
if(dsbool(params,'medrat'))
f=features_medrat(I1,sBins)+.000001;
feat=cat(3,feat,f(2:end-1,2:end-1,:));
end
if(dsbool(params,'useColor'))
feat=cat(3,feat,imresize(im2(:,:,2),[rows cols],'bilinear'),imresize(im2(:,:,3),[rows cols],'bilinear'));
elseif(dsbool(params,'useColorHists'))
for(k=2:3)
tohist=im2col(imresize(im2(:,:,k),[rows*sBins, cols*sBins]),[sBins,sBins],'distinct');
fhist{k-1}=reshape(permute(histc(tohist,histbin,1),[2,1]),rows,cols,[]);
fhist{k-1}=fhist{k-1}(:,:,1:end-1).*.0006;
end
feat=cat(3,feat,fhist{1},fhist{2});
end
end
[GX, GY] = gradient(I1);
GI = mean((GX*255).^2, 3) + mean((GY*255).^2, 3);
GI=imresize(GI,[rows,cols],'bilinear');
pyramidLevs{lev} = feat;%(:, :, 1:31);
gradientLevs{lev} = GI;
end
canoSize.nrows = size(im,1);
canoSize.ncols = size(im,2);
pyramid = struct('features', {pyramidLevs}, 'scales', scales, ...
'canonicalScale', canoScale, 'sbins', sBins, 'canonicalSize', canoSize, 'gradimg', {gradientLevs},'scaleIntervals',params.scaleIntervals);
end
function numLev = getNumPyramidLevels(rows, cols, intervals, basePatSize)
lev1 = floor(intervals * log2(rows / basePatSize(1)));
lev2 = floor(intervals * log2(cols / basePatSize(2)));
numLev = min(lev1, lev2) + 1;
end