Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update bm25Vectorizer #323

Merged
merged 9 commits into from
Jan 17, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
51 changes: 36 additions & 15 deletions pyserini/vectorizer/_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,12 +15,14 @@
#

import math
from typing import List
from typing import List, Optional
from sklearn.preprocessing import normalize

from scipy.sparse import csr_matrix
from sklearn.preprocessing import normalize

from pyserini import index, search
from pyserini.analysis import Analyzer, get_lucene_analyzer
from tqdm import tqdm


class Vectorizer:
Expand All @@ -42,12 +44,15 @@ def __init__(self, lucene_index_path: str, min_df: int = 1, verbose: bool = Fals
self.index_reader = index.IndexReader(lucene_index_path)
self.searcher = search.SimpleSearcher(lucene_index_path)
self.num_docs: int = self.searcher.num_docs
self.stats = self.index_reader.stats()
self.analyzer = Analyzer(get_lucene_analyzer())

# build vocabulary
self.vocabulary_ = set()
for term in self.index_reader.terms():
if term.df > self.min_df:
self.vocabulary_.add(term.term)
self.vocabulary_ = sorted(self.vocabulary_)

# build term to index mapping
self.term_to_index = {}
Expand All @@ -58,6 +63,17 @@ def __init__(self, lucene_index_path: str, min_df: int = 1, verbose: bool = Fals
if self.verbose:
print(f'Found {self.vocabulary_size} terms with min_df={self.min_df}')

def get_query_vector(self, query: str):
matrix_row, matrix_col, matrix_data = [], [], []
tokens = self.analyzer.analyze(query)
for term in tokens:
if term in self.vocabulary_:
matrix_row.append(0)
matrix_col.append(self.term_to_index[term])
matrix_data.append(1)
vectors = csr_matrix((matrix_data, (matrix_row, matrix_col)), shape=(1, self.vocabulary_size))
return vectors


class TfidfVectorizer(Vectorizer):
"""Wrapper class for tf-idf vectorizer implemented on top of Pyserini.
Expand All @@ -79,26 +95,25 @@ def __init__(self, lucene_index_path: str, min_df: int = 1, verbose: bool = Fals
for term in self.index_reader.terms():
self.idf_[term.term] = math.log(self.num_docs / term.df)

def get_vectors(self, docids: List[str]):
def get_vectors(self, docids: List[str], norm: Optional[str] = 'l2'):
"""Get the tf-idf vectors given a list of docids

Parameters
----------
norm : str
Normalize the sparse matrix
docids : List[str]
The piece of text to analyze.

Returns
-------
csr_matrix
L2 normalized sparse matrix representation of tf-idf vectors
Sparse matrix representation of tf-idf vectors
"""
matrix_row, matrix_col, matrix_data = [], [], []
num_docs = len(docids)

for index, doc_id in enumerate(docids):
if index % 1000 == 0 and num_docs > 1000 and self.verbose:
print(f'Vectorizing: {index}/{len(docids)}')

for index, doc_id in enumerate(tqdm(docids)):
# Term Frequency
tf = self.index_reader.get_document_vector(doc_id)
if tf is None:
Expand All @@ -115,7 +130,10 @@ def get_vectors(self, docids: List[str]):
matrix_data.append(tfidf)

vectors = csr_matrix((matrix_data, (matrix_row, matrix_col)), shape=(num_docs, self.vocabulary_size))
return normalize(vectors, norm='l2')
MXueguang marked this conversation as resolved.
Show resolved Hide resolved

if norm:
return normalize(vectors, norm=norm)
return vectors


class BM25Vectorizer(Vectorizer):
Expand All @@ -134,25 +152,25 @@ class BM25Vectorizer(Vectorizer):
def __init__(self, lucene_index_path: str, min_df: int = 1, verbose: bool = False):
super().__init__(lucene_index_path, min_df, verbose)

def get_vectors(self, docids: List[str]):
def get_vectors(self, docids: List[str], norm: Optional[str] = 'l2'):
"""Get the BM25 vectors given a list of docids

Parameters
----------
norm : str
Normalize the sparse matrix
docids : List[str]
The piece of text to analyze.

Returns
-------
csr_matrix
L2 normalized sparse matrix representation of BM25 vectors
Sparse matrix representation of BM25 vectors
"""
matrix_row, matrix_col, matrix_data = [], [], []
num_docs = len(docids)

for index, doc_id in enumerate(docids):
if index % 1000 == 0 and num_docs > 1000 and self.verbose:
print(f'Vectorizing: {index}/{len(docids)}')
for index, doc_id in enumerate(tqdm(docids)):

# Term Frequency
tf = self.index_reader.get_document_vector(doc_id)
Expand All @@ -170,4 +188,7 @@ def get_vectors(self, docids: List[str]):
matrix_data.append(bm25_weight)

vectors = csr_matrix((matrix_data, (matrix_row, matrix_col)), shape=(num_docs, self.vocabulary_size))
return normalize(vectors, norm='l2')

if norm:
return normalize(vectors, norm=norm)
return vectors
23 changes: 21 additions & 2 deletions tests/test_index_reader.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def setUp(self):
self.searcher = search.SimpleSearcher(self.index_path)
self.index_reader = index.IndexReader(self.index_path)

def test_tfidf_vectorizer(self):
def test_tfidf_vectorizer_train(self):
vectorizer = TfidfVectorizer(self.index_path, min_df=5)
train_docs = ['CACM-0239', 'CACM-0440', 'CACM-3168', 'CACM-3169']
train_labels = [1, 1, 0, 0]
Expand All @@ -62,7 +62,7 @@ def test_tfidf_vectorizer(self):
self.assertAlmostEqual(0.51837413, pred[1][0], places=8)
self.assertAlmostEqual(0.48162587, pred[1][1], places=8)

def test_bm25_vectorizer(self):
def test_bm25_vectorizer_train(self):
vectorizer = BM25Vectorizer(self.index_path, min_df=5)
train_docs = ['CACM-0239', 'CACM-0440', 'CACM-3168', 'CACM-3169']
train_labels = [1, 1, 0, 0]
Expand All @@ -77,6 +77,25 @@ def test_bm25_vectorizer(self):
self.assertAlmostEqual(0.48288416, pred[1][0], places=8)
self.assertAlmostEqual(0.51711584, pred[1][1], places=8)

def test_tfidf_vectorizer(self):
vectorizer = TfidfVectorizer(self.index_path, min_df=5)
result = vectorizer.get_vectors(['CACM-0239', 'CACM-0440'], norm=None)
self.assertAlmostEqual(result[0, 190], 2.907369334264736, places=8)
self.assertAlmostEqual(result[1, 391], 0.07516490235060004, places=8)

def test_bm25_vectorizer(self):
vectorizer = BM25Vectorizer(self.index_path, min_df=5)
result = vectorizer.get_vectors(['CACM-0239', 'CACM-0440'], norm=None)
self.assertAlmostEqual(result[0, 190], 1.7513844966888428, places=8)
self.assertAlmostEqual(result[1, 391], 0.03765463829040527, places=8)

def test_vectorizer_query(self):
vectorizer = BM25Vectorizer(self.index_path, min_df=5)
result = vectorizer.get_query_vector('this is a query to test query vector')
self.assertEqual(result[0, 2703], 2)
self.assertEqual(result[0, 3078], 1)
self.assertEqual(result[0, 3204], 1)

def test_terms_count(self):
# We're going to iterate through the index and make sure we have the correct number of terms.
self.assertEqual(sum(1 for x in self.index_reader.terms()), 14363)
Expand Down