Skip to content

Commit

Permalink
add document for unicoil-d2q on msmarco-v2 (#987)
Browse files Browse the repository at this point in the history
  • Loading branch information
MXueguang authored Feb 5, 2022
1 parent d2119d6 commit e194140
Showing 1 changed file with 87 additions and 0 deletions.
87 changes: 87 additions & 0 deletions docs/experiments-msmarco-v2-unicoil.md
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,47 @@ tar -xvf collections/msmarco_v2_passage_unicoil_0shot.tar -C collections/

To confirm, `msmarco_v2_passage_unicoil_0shot.tar` is 41 GB and has an MD5 checksum of `1949a00bfd5e1f1a230a04bbc1f01539`.

Index the sparse vectors:

```bash
python -m pyserini.index \
--collection JsonVectorCollection \
--input collections/msmarco_v2_passage_unicoil_0shot \
--index indexes/lucene-index.msmarco-v2-passage.unicoil-0shot \
--generator DefaultLuceneDocumentGenerator \
--threads 32 \
--impact \
--pretokenized
```

Sparse retrieval with uniCOIL:

```bash
python -m pyserini.search \
--topics msmarco-v2-passage-dev \
--encoder castorini/unicoil-msmarco-passage \
--index indexes/lucene-index.msmarco-v2-passage.unicoil-0shot \
--output runs/run.msmarco-v2-passage.unicoil.0shot.txt \
--impact \
--hits 1000 \
--batch 144 \
--threads 36
```

To evaluate, using `trec_eval`:

```bash
$ python -m pyserini.eval.trec_eval -c -M 100 -m map -m recip_rank msmarco-v2-passage-dev runs/run.msmarco-v2-passage.unicoil.0shot.txt
Results:
map all 0.1488
recip_rank all 0.1501

$ python -m pyserini.eval.trec_eval -c -m recall.100,1000 msmarco-v2-passage-dev runs/run.msmarco-v2-passage.unicoil.0shot.txt
Results:
recall_100 all 0.5515
recall_1000 all 0.7613
```

## Document Ranking (No Expansion)

> You can skip the data prep and indexing steps if you use our pre-built indexes. Skip directly down to the "Retrieval" section below.
Expand Down Expand Up @@ -173,6 +214,52 @@ tar -xvf collections/msmarco_v2_doc_segmented_unicoil_0shot.tar -C collections/

To confirm, `msmarco_v2_doc_segmented_unicoil_0shot.tar` is 62 GB and has an MD5 checksum of `889db095113cc4fe152382ccff73304a`.

Index the sparse vectors:

```bash
python -m pyserini.index \
--collection JsonVectorCollection \
--input collections/msmarco_v2_doc_segmented_unicoil_0shot \
--index indexes/lucene-index.msmarco-doc-v2-segmented.unicoil.0shot \
--generator DefaultLuceneDocumentGenerator \
--threads 32 \
--impact \
--pretokenized
```

Sparse retrieval with uniCOIL:

```bash
python -m pyserini.search \
--topics msmarco-v2-doc-dev \
--encoder castorini/unicoil-msmarco-passage \
--index indexes/lucene-index.msmarco-doc-v2-segmented.unicoil.0shot \
--output runs/run.msmarco-doc-v2-segmented.unicoil.0shot.txt \
--impact \
--hits 10000 \
--batch 144 \
--threads 36 \
--max-passage-hits 1000 \
--max-passage
```

For the document corpus, since we are searching the segmented version, we retrieve the top 10k _segments_ and perform MaxP to obtain the top 1000 _documents_.

To evaluate, using `trec_eval`:

```bash
$ python -m pyserini.eval.trec_eval -c -M 100 -m map -m recip_rank msmarco-v2-doc-dev runs/run.msmarco-doc-v2-segmented.unicoil.0shot.txt
Results:
map all 0.2217
recip_rank all 0.2242

$ python -m pyserini.eval.trec_eval -c -m recall.100,1000 msmarco-v2-doc-dev runs/run.msmarco-doc-v2-segmented.unicoil.0shot.txt
Results:
recall_100 all 0.7556
recall_1000 all 0.9056
```


## Reproduction Log[*](reproducibility.md)

+ Results reproduced by [@lintool](https://github.com/lintool) on 2021-08-13 (commit [`2b96b9`](https://github.com/castorini/pyserini/commit/2b96b99773302315e4d7dbe4a373b36b3eadeaa6))

0 comments on commit e194140

Please sign in to comment.