-
Notifications
You must be signed in to change notification settings - Fork 386
/
test_encoder_model_dpr.py
63 lines (51 loc) · 2.34 KB
/
test_encoder_model_dpr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
#
# Pyserini: Reproducible IR research with sparse and dense representations
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import json
import unittest
from itertools import islice
import numpy as np
from pyserini.encode import DprDocumentEncoder, DprQueryEncoder
from pyserini.search import get_topics
class TestEncodeDpr(unittest.TestCase):
def test_dpr_doc_encoder(self):
texts = []
with open('tests/resources/simple_cacm_corpus.json') as f:
for line in f:
line = json.loads(line)
texts.append(line['contents'])
encoder = DprDocumentEncoder('facebook/dpr-ctx_encoder-multiset-base', device='cpu')
vectors = encoder.encode(texts[:3])
self.assertAlmostEqual(vectors[0][0], -0.59793323, places=4)
self.assertAlmostEqual(vectors[0][-1], -0.13036962, places=4)
self.assertAlmostEqual(vectors[2][0], -0.3044764, places=4)
self.assertAlmostEqual(vectors[2][-1], 0.1516793, places=4)
def test_dpr_encoded_queries(self):
encoded = DprQueryEncoder.load_encoded_queries('dpr_multi-nq-test')
topics = get_topics('dpr-nq-test')
for t in topics:
self.assertTrue(topics[t]['title'] in encoded.embedding)
def test_dpr_query_encoder(self):
encoder = DprQueryEncoder('facebook/dpr-question_encoder-multiset-base')
cached_encoder = DprQueryEncoder.load_encoded_queries('dpr_multi-nq-test')
topics = get_topics('dpr-nq-test')
# Just test the first 10 topics
for t in dict(islice(topics.items(), 10)):
cached_vector = np.array(cached_encoder.encode(topics[t]['title']))
encoded_vector = np.array(encoder.encode(topics[t]['title']))
l1 = np.sum(np.abs(cached_vector - encoded_vector))
self.assertTrue(l1 < 0.0005)
if __name__ == '__main__':
unittest.main()