The commands below assume that Anserini and Birch are located in the same directory.
- Core17:
python core_cv.py --collection core17 --index_path /tuna1/indexes/lucene-index.core17.pos+docvectors+rawdocs --output_path core17_sents.txt
- Core18:
python core_cv.py --collection core18 --index_path /tuna1/indexes/lucene-index.core18.pos+docvectors+rawdocs --output_path core18_sents.txt
- Tune hyperparameters
./train.sh mb 5
- Calculate document score
Set the last argument to True if you want to use your hyperparameters. To use the default, set to False.
./test.sh mb 5 True
- Evaluate with trec_eval
./eval.sh mb ../Anserini/src/main/resources/topics-and-qrels/qrels.robust2004.txt
cd eval_scripts
./compare_runs.sh
- Runs for all experiments by default
- Modify arrays
experiments
,collections
andmetrics
if necessary - Check results for each experiment under
eval_scripts/sig_tests
Top K Sentences | Method | Recall | Number of Docs | MAP of Max Sent |
---|---|---|---|---|
1000 | RM3 | 0.63 | 720.4 | 0.1974 |
1500 | RM3 | 0.67 | 1065.4 | 0.1985 |
1000 | BM25 | 0.61 | 716.6 | 0.1862 |
1500 | BM25 | 0.66 | 1057.1 | 0.1895 |
score = Lambda * bm25_rm3 + (1.0-Lambda) * (bert_high_sent_1 + bert_high_sent_2/2)
MAP (Top1000) | MAP (Top100) | Lambda |
---|---|---|
0.1825 | 0.2051 | 0 |
0.1921 | 0.2106 | 0.05 |
0.2027 | 0.2151 | 0.1 |
0.2137 | 0.2194 | 0.15 |
0.2246 | 0.2233 | 0.2 |
0.2359 | 0.2282 | 0.25 |
0.2467 | 0.2321 | 0.3 |
0.2561 | 0.2354 | 0.35 |
0.2654 | 0.2388 | 0.4 |
0.2739 | 0.2419 | 0.45 |
0.2819 | 0.2451 | 0.5 |
0.2878 | 0.2472 | 0.55 |
0.2932 | 0.2497 | 0.6 |
0.296 | 0.2503 | 0.65 |
0.2999 | 0.2522 | 0.7 |
0.3011 | 0.2525 | 0.75 |
0.3008 | 0.2518 | 0.8 |
0.2999 | 0.2511 | 0.85 |
0.2975 | 0.2495 | 0.9 |
0.2952 | 0.2484 | 0.95 |
0.2903 | 0.2451 | 1 |
score = Lambda * bm25_rm3 + (1.0-Lambda) * (bert_high_sent_1 + bert_high_sent_2/2)
MAP (Top1000) | MAP (Top100) | Lambda |
---|---|---|
0.1724 | 0.2378 | 0 |
0.1836 | 0.2413 | 0.05 |
0.196 | 0.2445 | 0.1 |
0.2083 | 0.2478 | 0.15 |
0.2212 | 0.2505 | 0.2 |
0.2349 | 0.2525 | 0.25 |
0.2477 | 0.2543 | 0.3 |
0.2593 | 0.2562 | 0.35 |
0.2693 | 0.2579 | 0.4 |
0.2792 | 0.2588 | 0.45 |
0.2864 | 0.2596 | 0.5 |
0.2922 | 0.2595 | 0.55 |
0.297 | 0.2594 | 0.6 |
0.2995 | 0.2594 | 0.65 |
0.3013 | 0.2585 | 0.7 |
0.3016 | 0.2576 | 0.75 |
0.3009 | 0.2557 | 0.8 |
0.299 | 0.2537 | 0.85 |
0.297 | 0.2515 | 0.9 |
0.2945 | 0.2489 | 0.95 |
0.2903 | 0.2451 | 1 |
MAP | Lambda |
---|---|
0.2020 | 0 |
0.2076 | 0.05 |
0.2130 | 0.1 |
0.2189 | 0.15 |
0.2237 | 0.2 |
0.2301 | 0.25 |
0.2347 | 0.3 |
0.2399 | 0.35 |
0.2437 | 0.4 |
0.2466 | 0.45 |
0.2493 | 0.5 |
0.2520 | 0.55 |
0.2534 | 0.6 |
0.2548 | 0.65 |
0.2552 | 0.7 |
0.2560 | 0.75 |
0.2561 | 0.8 |
0.2545 | 0.85 |
0.2520 | 0.9 |
0.2494 | 0.95 |
0.2451 | 1 |
- Combine BERT scores from tweet and trec_wiki_qa
- re-rank from top BM25+RM3 100 to top 1000 documents