-
Notifications
You must be signed in to change notification settings - Fork 6
/
predict.py
724 lines (609 loc) · 26.7 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
import os
from cog import BasePredictor, Input, Path
from pyngrok import ngrok, conf
import sys
sys.path.append('/content/metavoice-src')
os.chdir('/content/metavoice-src')
import dataclasses
import hashlib
import json
import os
import pathlib
import shutil
import subprocess
import tempfile
from contextlib import nullcontext
from dataclasses import dataclass
from typing import List, Literal, Optional, Type
import torch
import tqdm
import tqdm.contrib.concurrent
import tyro
from huggingface_hub import snapshot_download
from fam.llm.adapters import FlattenedInterleavedEncodec2Codebook, TiltedEncodec
from fam.llm.decoders import Decoder, EncodecDecoder
from fam.llm.enhancers import BaseEnhancer, get_enhancer
from fam.llm.model import GPT, GPTConfig
from fam.llm.utils import normalize_text
from fam.quantiser.audio.speaker_encoder.model import SpeakerEncoder
from fam.quantiser.text.tokenise import TrainedBPETokeniser
@dataclass
class InferenceConfig:
ckpt_path: str # path to checkpoint
output_dir: str
num_samples: int = 10 # number of samples to draw
seed: int = 1337 # random seed
device: str = "cuda"
dtype: str = "bfloat16"
compile: bool = False
init_from: str = "resume" # either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')
def __str__(self):
field_strs = []
for field in dataclasses.fields(self):
value = getattr(self, field.name)
field_strs.append(f" {field.name}: {value}")
return "InferenceConfig:\n" + "\n".join(field_strs)
class Model:
"""
Class to sample from a trained model.
"""
def __init__(
self,
config: InferenceConfig,
tokenizer_cls: Type[TrainedBPETokeniser],
decoder_cls: Type[Decoder],
data_adapter_fn,
use_kv_cache: Optional[Literal["none", "flash_decoding", "vanilla"]] = None,
):
# TODO: disentangle the encodec stuff and numbers etc with rest of this code (esp at encoder-only / second stage model inference)
# TODO: remove magic number
self._encodec_codes_pad_token = 1024
self._num_encodec_codebooks = 8
self.config = config
self.use_kv_cache = use_kv_cache
torch.manual_seed(config.seed)
torch.cuda.manual_seed(config.seed)
torch.backends.cuda.matmul.allow_tf32 = True if config.dtype != "float32" else False # allow tf32 on matmul
torch.backends.cudnn.allow_tf32 = True if config.dtype != "float32" else False # allow tf32 on cudnn
device_type = "cuda" if "cuda" in config.device else "cpu" # for later use in torch.autocast
ptdtype = {
"float32": torch.float32,
"tfloat32": torch.float32,
"bfloat16": torch.bfloat16,
"float16": torch.float16,
}[config.dtype]
self._ctx = (
nullcontext() if device_type == "cpu" else torch.amp.autocast(device_type=device_type, dtype=ptdtype)
)
self.use_bpe_tokenizer = False
self.load_meta = None
self.speaker_cond = None
self.meta = None
self.model = None
self.checkpoint_config = None
self.vocab_sizes = None
self.smodel = None
self._init_model()
self.tokenizer = tokenizer_cls(**self.meta["tokenizer"])
self.decoder = decoder_cls(
tokeniser_decode_fn=self.tokenizer.decode,
output_dir=self.config.output_dir,
data_adapter_fn=data_adapter_fn,
)
def _init_model(self):
if self.config.init_from == "resume":
# init from a model saved in a specific directory
checkpoint = torch.load(self.config.ckpt_path, map_location=self.config.device)
self.vocab_sizes = checkpoint["model_args"]["vocab_sizes"]
self.load_meta = False
self.speaker_cond = False
if "config" in checkpoint:
self.checkpoint_config = checkpoint["config"]
self.meta = checkpoint["meta"]
load_meta = True
if load_meta:
self.use_bpe_tokenizer = "stoi" not in self.meta or "itos" not in self.meta
self.speaker_cond = self.meta.get("speaker_cond")
if self.speaker_cond:
speaker_emb_size = self.meta["speaker_emb_size"]
model_args = checkpoint["model_args"]
if "causal" in self.checkpoint_config and self.checkpoint_config["causal"] is False:
self._encodec_ctx_window = model_args["block_size"]
gptconf = GPTConfig(**model_args)
# TODO: rename `speaker_emb_dim` to `speaker_emb_size`.
self.model = GPT(gptconf, speaker_emb_dim=speaker_emb_size if self.speaker_cond else None)
state_dict = checkpoint["model"]
unwanted_prefix = "_orig_mod."
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
self.model.load_state_dict(state_dict)
# model
self.model.eval()
self.model.to(self.config.device)
if self.config.compile:
from einops._torch_specific import allow_ops_in_compiled_graph
allow_ops_in_compiled_graph()
self.model = torch.compile(self.model) # type: ignore
if self.use_kv_cache is not None:
if "causal" in self.checkpoint_config and self.checkpoint_config["causal"] is False:
raise Exception("kv_cache not supported for non-causal models!")
if self.use_kv_cache == "flash_decoding":
self.model.enable_kv_cache()
for block in self.model.transformer.h:
block.attn.attn_kernel_type = "fd"
elif self.use_kv_cache == "vanilla":
for block in self.model.transformer.h:
if block.attn.attn_kernel_type != "fa2":
raise Exception(
f"kv_cache only supported for flash attention 2 but found {block.attn.attn_kernel_type} inside model!"
)
self.model.enable_kv_cache()
else:
raise NotImplementedError(f"kv_cache type {self.use_kv_cache} not implemented!")
def causal_sample(
self,
*,
texts: list[str],
batch_size: int,
max_new_tokens: int,
temperature: Optional[float],
top_k: Optional[int],
top_p: Optional[float],
speaker_embs: Optional[torch.Tensor] = None,
guidance_scale: Optional[float] = None,
) -> list[torch.Tensor]:
"""
Returns list of torch.Tensors of tokens. Each tensor is of shape (1, c, t) where c is the number of codebooks.
Any flattening / inteleaving / tilting gets reversed before the output is returned.
"""
if speaker_embs is not None:
assert len(texts) == len(speaker_embs)
encoded_texts = [self.tokenizer.encode(text) for text in texts]
## create multiple hierarchies and get seq_lens
seq_lens = []
xs = []
for i, encoded_text in enumerate(encoded_texts):
encoded_text = torch.tensor([encoded_text], dtype=torch.long, device=self.config.device)
# TODO: remove magic number
xs.append(
torch.cat(
# [1st hierarchy of text, *remaining hierarchies of padded tokens]
# TODO: self.vocab_sizes should be from the model config?
[encoded_text, *[torch.ones_like(encoded_text) * 1024] * (len(self.vocab_sizes) - 1)],
dim=0,
).unsqueeze(0)
) # b x [(b=1, c, t)]
seq_lens.append(xs[-1].shape[-1])
max_len = max(seq_lens)
assert len(xs) == len(seq_lens)
## equalise the shapes in the batch. we can use torch.zeros as tokens > seq_lens will be masked out.
x = torch.zeros((len(encoded_texts), xs[0].shape[1], max_len), dtype=torch.long, device=self.config.device)
for i, _xs in enumerate(xs):
assert _xs.shape[-1] == seq_lens[i]
x[i, :, : seq_lens[i]] = _xs
## check that the input is correct
for i in range(x.shape[0]):
assert x[i, 0, : seq_lens[i]].tolist() == encoded_texts[i]
# TODO: remove magic number
if x.shape[1] > 1:
assert set(x[i, 1, : seq_lens[i]].tolist()) == set([1024])
assert x.shape[0] == speaker_embs.shape[0] if speaker_embs is not None else True
if self.speaker_cond is False:
speaker_embs = None
# run sampling loop
with torch.no_grad():
with self._ctx: # type: ignore
to_return = []
for k in range(self.config.num_samples):
assert seq_lens is not None
assert batch_size is not None
if max(seq_lens) + max_new_tokens >= self.model.config.block_size:
raise Exception(
f"max_new_tokens {max_new_tokens} too large! Choose {self.model.config.block_size - max(seq_lens) - 1} instead."
)
y = self.model.generate(
x,
max_new_tokens,
seq_lens=seq_lens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
speaker_embs=speaker_embs,
batch_size=batch_size,
guidance_scale=guidance_scale,
)
for i in range(len(y)):
to_return.append(self.decoder.decode(tokens=y[i].tolist(), causal=True))
return to_return
def non_causal_sample(
self,
*,
texts: list[str],
encodec_tokens: list[torch.Tensor],
batch_size: int,
top_k: Optional[int],
temperature: Optional[float],
speaker_embs: Optional[torch.Tensor] = None,
) -> list[str]:
"""
Returns paths to saved audio files.
"""
if speaker_embs is not None:
assert len(texts) == len(speaker_embs)
encoded_texts = [self.tokenizer.encode(text) for text in texts]
# setup input
# TODO: same code is used during data prep. refactor
padded_hierarchies_inputs = []
for encoded_text, encodec_token in zip(encoded_texts, encodec_tokens):
x = torch.tensor(encoded_text, dtype=torch.long, device=self.config.device)[
None, None, ...
] # (b=1, c=1, t)
# TODO: should only happen if decoder is encodecdeocder?
assert encodec_token.shape[0] == 1
encodec_token = encodec_token[0].tolist() # (b=1, c, t) -> (c, t)
assert len(encodec_token) >= 1 and len(encodec_token) <= self._num_encodec_codebooks
## setup hierarchies of tokens
# TODO: refactor and merge with code in processing.py
text_tokens = encoded_text # (t,)
hierarchies_in = []
hierarchies_in.append(text_tokens + encodec_token[0] + [self._encodec_codes_pad_token])
hierarchies_in.append(
[self._encodec_codes_pad_token] * len(text_tokens) + encodec_token[1] + [self._encodec_codes_pad_token]
)
## adding padding / cutting to the right size as needed
# TODO: refactor and merge with code in processing.py
padded_hierarchies_input = []
for _, t_hierarchy in enumerate(hierarchies_in):
assert len(t_hierarchy) == len(hierarchies_in[0])
if len(t_hierarchy) < self._encodec_ctx_window:
padded_hierarchies_input.append(
t_hierarchy + [self._encodec_codes_pad_token] * (self._encodec_ctx_window - len(t_hierarchy))
)
elif len(t_hierarchy) > self._encodec_ctx_window:
padded_hierarchies_input.append(t_hierarchy[: self._encodec_ctx_window])
else:
padded_hierarchies_input.append(t_hierarchy)
padded_hierarchies_inputs.append(padded_hierarchies_input)
## check that the input is correct
in_x = torch.tensor(padded_hierarchies_inputs, dtype=torch.long, device=self.config.device)
assert in_x.shape[0] == speaker_embs.shape[0] if speaker_embs is not None else True
if self.speaker_cond is False:
speaker_embs = None
# run sampling loop
with torch.no_grad():
with self._ctx: # type: ignore
to_return = []
for k in range(self.config.num_samples):
y = self.model.generate(
in_x,
None,
temperature=temperature,
top_k=top_k,
# TODO: handle separate top_p for this model explicitly
top_p=None,
speaker_embs=speaker_embs,
batch_size=batch_size,
guidance_scale=None,
)
b_tokens = torch.cat([in_x, y], dim=1)
for tokens in b_tokens:
try:
to_return.append(self.decoder.decode(tokens=tokens.tolist(), causal=False))
except Exception as e:
print("failed to run MBD.")
print(f"reason: {str(e)}")
to_return.append(None)
return to_return
def __call__(
self,
*,
texts: list[str],
batch_size: int,
max_new_tokens: Optional[int],
top_k: Optional[int],
top_p: Optional[float],
temperature: Optional[float],
encodec_tokens: Optional[list[torch.Tensor]] = None,
speaker_embs: Optional[torch.Tensor] = None,
guidance_scale: Optional[float] = None,
):
if self.checkpoint_config.get("causal", True):
return self.causal_sample(
texts=texts,
batch_size=batch_size,
speaker_embs=speaker_embs,
guidance_scale=guidance_scale,
max_new_tokens=max_new_tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature,
)
else:
assert encodec_tokens is not None
assert guidance_scale is None
assert max_new_tokens is None
assert top_p is None
return self.non_causal_sample(
texts=texts,
encodec_tokens=encodec_tokens,
batch_size=batch_size,
speaker_embs=speaker_embs,
top_k=top_k,
temperature=temperature,
)
def save_result_metadata(wav_path, ref_path, text, first_stage_ckpt_path, second_stage_ckpt_path):
if first_stage_ckpt_path is None or second_stage_ckpt_path is None:
return
json.dump(
{
"speaker": ref_path,
"text": text,
},
pathlib.Path(str(wav_path) + ".json").open("w"),
)
def get_cached_file(file_or_uri: str):
"""
If it's an s3 file, download it to a local temporary file and return that path.
Otherwise return the path as is.
"""
is_uri = file_or_uri.startswith("http")
if is_uri:
ext = pathlib.Path(file_or_uri).suffix
# hash the file path to get the cache name
_cache_name = "audio_" + hashlib.md5(file_or_uri.encode("utf-8")).hexdigest() + ext
os.makedirs(os.path.expanduser("~/.cache/fam/"), exist_ok=True)
cache_path = os.path.expanduser(f"~/.cache/fam/{_cache_name}")
if not os.path.exists(cache_path):
command = f"curl -o {cache_path} {file_or_uri}"
subprocess.run(command, shell=True, check=True)
return cache_path
else:
if os.path.exists(file_or_uri):
return file_or_uri
else:
raise FileNotFoundError(f"File {file_or_uri} not found!")
def get_cached_embedding(local_file_path: str, spkemb_model):
if not os.path.exists(local_file_path):
raise FileNotFoundError(f"File {local_file_path} not found!")
# hash the file path to get the cache name
_cache_name = "embedding_" + hashlib.md5(local_file_path.encode("utf-8")).hexdigest() + ".pt"
os.makedirs(os.path.expanduser("~/.cache/fam/"), exist_ok=True)
cache_path = os.path.expanduser(f"~/.cache/fam/{_cache_name}")
if not os.path.exists(cache_path):
spk_emb = spkemb_model.embed_utterance_from_file(local_file_path, numpy=False).unsqueeze(0) # (b=1, c)
torch.save(spk_emb, cache_path)
else:
spk_emb = torch.load(cache_path)
return spk_emb
def _sample_utterance_batch(
texts: list[str],
spk_cond_paths: list[Optional[str]],
spkemb_model,
first_stage_model,
second_stage_model,
enhancer: Optional[Literal["df"] | BaseEnhancer],
first_stage_ckpt_path: str,
second_stage_ckpt_path: str,
guidance_scale: Optional[float],
max_new_tokens: int,
top_k: Optional[int],
top_p: Optional[float],
temperature: Optional[float],
batch_size: int = 128,
) -> List[str]:
speaker_embs = []
refs = spk_cond_paths.copy()
# multithreaded loop to cache all the files
spk_cond_paths = tqdm.contrib.concurrent.thread_map(
get_cached_file, spk_cond_paths, desc="getting cached speaker ref files"
)
for i, (text, spk_cond_path) in tqdm.tqdm(
enumerate(zip(texts, spk_cond_paths)), total=len(texts), desc="calculating speaker embeddings"
):
texts[i] = normalize_text(text)
speaker_embs.append(get_cached_embedding(spk_cond_path, spkemb_model) if spk_cond_path else None)
b_speaker_embs = torch.cat(speaker_embs, dim=0)
b_tokens = first_stage_model(
texts=texts,
speaker_embs=b_speaker_embs,
batch_size=batch_size,
guidance_scale=guidance_scale,
top_p=top_p,
top_k=top_k,
temperature=temperature,
max_new_tokens=max_new_tokens,
)
# TODO: set batch size for second stage model!
wav_files = second_stage_model(
texts=texts,
encodec_tokens=b_tokens,
speaker_embs=b_speaker_embs,
batch_size=batch_size,
guidance_scale=None,
top_p=None,
top_k=top_k,
temperature=temperature,
max_new_tokens=None,
)
for text, tokens, speaker_embs, ref_name, wav_file in zip(texts, b_tokens, b_speaker_embs, refs, wav_files):
if wav_file is None:
continue
with tempfile.NamedTemporaryFile(suffix=".wav") as enhanced_tmp:
if enhancer is not None:
enhancer = get_enhancer(enhancer) if isinstance(enhancer, str) else enhancer
enhancer(str(wav_file) + ".wav", enhanced_tmp.name)
# copy enhanced_tmp.name back to wav_file
print(f"copying enhanced file from {enhanced_tmp.name} to {str(wav_file) + '.wav'}.")
shutil.copy2(enhanced_tmp.name, str(wav_file) + ".wav")
save_result_metadata(
wav_file,
ref_name,
text,
first_stage_ckpt_path,
second_stage_ckpt_path,
)
return [str(w) + ".wav" if not str(w).endswith(".wav") else str(w) for w in wav_files]
def sample_utterance(
text: str,
spk_cond_path: Optional[str],
spkemb_model,
first_stage_model,
second_stage_model,
enhancer: Optional[Literal["df"] | BaseEnhancer],
first_stage_ckpt_path: str,
second_stage_ckpt_path: str,
guidance_scale: Optional[float],
max_new_tokens: int,
top_k: Optional[int],
top_p: Optional[float],
temperature: Optional[float],
) -> str:
# NOTE: supports max. 220 characters atm.
# Long form synthesis coming soon...
MAX_CHARS = 220
if len(text) > MAX_CHARS:
print(
f"\n***WARNING: Max {MAX_CHARS} characters supported. Provided: {len(text)}. Truncating and generating speech...Can lead to unpredictable speech at the end.***"
)
return _sample_utterance_batch(
texts=[text],
spk_cond_paths=[spk_cond_path],
spkemb_model=spkemb_model,
first_stage_model=first_stage_model,
second_stage_model=second_stage_model,
enhancer=enhancer,
first_stage_ckpt_path=first_stage_ckpt_path,
second_stage_ckpt_path=second_stage_ckpt_path,
batch_size=1,
guidance_scale=guidance_scale,
max_new_tokens=max_new_tokens,
top_k=top_k,
top_p=top_p,
temperature=temperature,
)[0]
def build_models(config_first_stage, config_second_stage, device, use_kv_cache):
smodel = SpeakerEncoder(device=device, eval=True, verbose=False)
data_adapter = FlattenedInterleavedEncodec2Codebook(end_of_audio_token=1024)
llm_first_stage = Model(
config_first_stage,
TrainedBPETokeniser,
EncodecDecoder,
data_adapter_fn=data_adapter.decode,
use_kv_cache=use_kv_cache,
)
data_adapter_second_stage = TiltedEncodec(end_of_audio_token=1024)
llm_second_stage = Model(
config_second_stage, TrainedBPETokeniser, EncodecDecoder, data_adapter_fn=data_adapter_second_stage.decode
)
return smodel, llm_first_stage, llm_second_stage
def get_first_stage_path(model_dir: str):
"""Absolute path to checkpoint for the first stage model."""
return os.path.join(os.path.expanduser(model_dir), "first_stage.pt")
def get_second_stage_path(model_dir: str):
"""Absolute path to checkpoint for the second stage model."""
return os.path.join(os.path.expanduser(model_dir), "second_stage.pt")
# %cd /content/metavoice-src
# !python fam/llm/sample.py --huggingface_repo_id="metavoiceio/metavoice-1B-v0.1" --spk_cond_path="assets/ava.flac" --dtype=float16
@dataclass
class SamplingControllerConfig:
"""
Sample from a trained model.
"""
huggingface_repo_id: str = "metavoiceio/metavoice-1B-v0.1"
"""Absolute path to the model directory."""
spk_cond_path: str = "/content/metavoice-src/ava.flac"
"""Path to speaker reference file. Supports: wav, flac & mp3"""
text: str = (
"This is a demo of text to speech by MetaVoice-1B, an open-source foundational audio model by MetaVoice."
)
"""Text to synthesise."""
num_samples: int = 1
"""Number of samples to generate from each model."""
max_new_tokens: int = 864
"""Maximum number of new tokens to generate from the first stage model."""
temperature: float = 1.0
"""Temperature for sampling applied to both models."""
top_k: Optional[int] = 200
"""Top k for sampling applied to both models."""
top_p: Optional[float] = None
"""Top p for sampling applied to first-stage model."""
seed: int = 1337
"""Random seed for sampling."""
device: Literal["cuda", "cpu"] = "cuda"
"""Device to use for sampling."""
dtype: Literal["bfloat16", "float16", "float32", "tfloat32"] = "bfloat16"
"""Data type to use for sampling."""
compile: bool = False
"""Whether to compile the model using PyTorch 2.0."""
enhancer: Optional[Literal["df"]] = "df"
"""Enhancer to use for post-processing."""
init_from: str = "resume"
"""Either 'resume' (from an out_dir) or a gpt2 variant (e.g. 'gpt2-xl')."""
use_kv_cache: Optional[Literal["flash_decoding", "vanilla"]] = None
"""Type of kv caching to use for inference: 1) [none] no kv caching, 2) [flash_decoding] use the
flash decoding kernel, 3) [vanilla] use flash attention 2 with hand implemented kv-cache."""
output_dir: str = "samples/"
"""Relative path to output directory"""
guidance_scale: Optional[float] = None
"""Guidance scale for sampling."""
batch_size: int = 128
"""Batch size to use for sampling. Note that the batch size gets doubled when guidance is used. For H100, and 1B model,
1 w/ guidance and 1 w/o guidance work well (without kv-caching). With kv-caching, 128 (w/o guidance) and
64 (w/ guidance) works well."""
class Predictor(BasePredictor):
def setup(self) -> None:
self.sampling_config = SamplingControllerConfig
model_dir = snapshot_download(repo_id=self.sampling_config.huggingface_repo_id)
self.first_stage_ckpt_path = get_first_stage_path(model_dir)
self.second_stage_ckpt_path = get_second_stage_path(model_dir)
config_first_stage = InferenceConfig(
ckpt_path=self.first_stage_ckpt_path,
num_samples=self.sampling_config.num_samples,
seed=self.sampling_config.seed,
device=self.sampling_config.device,
dtype=self.sampling_config.dtype,
compile=self.sampling_config.compile,
init_from=self.sampling_config.init_from,
output_dir=self.sampling_config.output_dir,
)
config_second_stage = InferenceConfig(
ckpt_path=self.second_stage_ckpt_path,
num_samples=self.sampling_config.num_samples,
seed=self.sampling_config.seed,
device=self.sampling_config.device,
dtype=self.sampling_config.dtype,
compile=self.sampling_config.compile,
init_from=self.sampling_config.init_from,
output_dir=self.sampling_config.output_dir,
)
self.sampling_config.max_new_tokens *= (
2 # deal with max_new_tokens for flattened interleaving! (should scale with num_codebooks?)
)
# define models
self.smodel, self.llm_first_stage, self.llm_second_stage = build_models(
config_first_stage, config_second_stage, self.sampling_config.device, self.sampling_config.use_kv_cache
)
def predict(
self,
input_audio: Path = Input(description="Input Audio"),
text: str = Input(default="This is a demo of text to speech by MetaVoice-1B, an open-source foundational audio model by MetaVoice."),
) -> Path:
self.sampling_config.spk_cond_path = input_audio
self.sampling_config.text = text
output_audio = sample_utterance(
self.sampling_config.text,
os.path.expanduser(self.sampling_config.spk_cond_path),
self.smodel,
self.llm_first_stage,
self.llm_second_stage,
self.sampling_config.enhancer,
self.first_stage_ckpt_path,
self.second_stage_ckpt_path,
self.sampling_config.guidance_scale,
max_new_tokens=self.sampling_config.max_new_tokens,
top_k=self.sampling_config.top_k,
top_p=self.sampling_config.top_p,
temperature=self.sampling_config.temperature,
)
return Path(output_audio)