Skip to content

Anupam Datta, Matt Fredrikson, Klas Leino, Kaiji Lu, Shayak Sen, Ricardo Shih, Zifan Wang

License

Notifications You must be signed in to change notification settings

caleblu/neurips-demo-draft

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

INFORMATION

Time: TBD, Dec 5, 2021

Zoom Location: TBD

Speakers:

Anupam Datta, Carnegie Mellon University

Anupam Datta is a Professor of Electrical & Computer Engineering and Computer Science at Carnegie Mellon University, Co-founder and Chief Scientist of Truera, Director of the Accountable Systems Lab. He received his Ph.D. of Computer Science from Stanford University. His research focuses on enabling real-world complex systems to be accountable for their behavior, especially as they pertain to privacy, fairness, and security.


Matt Fredrikson, Carnegie Mellon University

Matt Fredrikson is an Assistant Professor of Computer Science at Carnegie Mellon University, where his research aims to make machine learning systems more accountable and reliable by addressing fundamental problems of security, privacy, and fairness that emerge in real-world settings.


Klas Leino, Carnegie Mellon University

Klas Leino is a PhD candidate in the Accountable Systems Lab at Carnegie Mellon University, advised by Matt Fredrikson. His research primarily concentrates on demystifying deep learning and understanding its weaknesses and vulnerabilities in order to improve the security, privacy, and transparency of deep neural networks.


Kaiji Lu, Carnegie Mellon University

Kaiji Lu is a fourth-year Ph.D. student in Electrical and Computer Engineering at Carnegie Mellon University. His research focuses on explainability, fairness and transparency of deep learning models, particular those with applications in Natural Language Processing (NLP).


Shayak Sen, Truera

Shayak Sen is Co-founder and Chief Technology Officer of Truera, a startup providing enterprise-class platform that delivers explainability for Machine Learning models. Shayak obtained his PhD in Computer Science from Carnegie Mellon University where his research aims to make machine learning and big data systems more explainable, privacy compliant, and fair.


Ricardo Shih, Truera

Rick is a leader in developing solutions connecting machine learning with production data science teams. He graduated with a Master’s in Machine Learning from UCSD. Rick has led machine learning efforts in improving e-commerce search, and is currently leading explanation efforts for time series and NLP models.


Zifan Wang, Carnegie Mellon University

Zifan Wang is a third-year student in the Accountable System Lab at Carnegie Mellon University, co-advised by Anupam Datta and Matt Fredrikson. His concentrations include explanation tools for deep nueral networks and its applicaiton for Computer Vision tasks.


DESCRIPTION

As machine learning has become increasingly ubiquitous, there has been a growing need to assess the trustworthiness of learned models. One important aspect to model trust is conceptual soundness, i.e., the extent to which a model uses features that are appropriate for its intended task. We present TruLens, a new cross-platform framework for explaining deep network behavior. In our demonstration, we provide an interactive application built on TruLens that we use to explore the conceptual soundness of various pre-trained models. Throughout the presentation, we take the unique perspective that robustness to small-norm adversarial examples is a necessary condition for conceptual soundness; we demonstrate this by comparing explanations on models trained with and without a robust objective. Our demonstration will focus on our end-to-end application, which will be made accessible for the audience to interact with; but we will also provide details on its open-source components, including the TruLens library and the code used to train robust networks.

Demo Colab Notebooks (More Details Coming Soon)

More resources are available on our Github page: TruLens

About

Anupam Datta, Matt Fredrikson, Klas Leino, Kaiji Lu, Shayak Sen, Ricardo Shih, Zifan Wang

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published