-
Notifications
You must be signed in to change notification settings - Fork 36
/
Copy pathentropy.py
1196 lines (1021 loc) · 45 KB
/
entropy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
r"""
Estimate entropy after a fit.
The :func:`gmm_entropy` function computes the entropy from a Gaussian mixture
model. This provides a reasonable estimate even for non-Gaussian distributions.
This is the recommended method for estimating the entropy of a sample.
The :func:`cov_entropy` method computes the entropy associated with the
covariance matrix. This covariance matrix can be estimated during the
fitting procedure (BFGS updates an estimate of the Hessian matrix for example),
or computed by estimating derivatives when the fit is complete.
The :class:`MVNEntropy` class estimates the covariance from an MCMC sample and
uses this covariance to estimate the entropy. This gives a better
estimate of the entropy than the equivalent direct calculation, which requires
many more samples for a good kernel density estimate. The *reject_normal*
attribute is *True* if the MCMC sample is significantly different from normal.
Unfortunately, this almost always the case for any reasonable sample size that
isn't strictly gaussian.
The :func:`entropy` function computes the entropy directly from a set
of MCMC samples, normalized by a scale factor computed from the kernel density
estimate at a subset of the points.\ [#Kramer]_
There are many other entropy calculations implemented within this file, as
well as a number of sampling distributions for which the true entropy is known.
Furthermore, entropy was computed against dream output and checked for
consistency. None of the methods is truly excellent in terms of minimum
sample size, maximum dimensions and speed, but many of them are pretty
good.
The following is an informal summary of the results from different algorithms
applied to DREAM output::
from .entropy import Timer as T
# Try MVN ... only good for normal distributions, but very fast
with T(): M = entropy.MVNEntropy(drawn.points)
print("Entropy from MVN: %s"%str(M))
# Try wnn ... no good.
with T(): S_wnn, Serr_wnn = entropy.wnn_entropy(drawn.points, n_est=20000)
print("Entropy from wnn: %s"%str(S_wnn))
# Try wnn with bootstrap ... still no good.
with T(): S_wnn, Serr_wnn = entropy.wnn_bootstrap(drawn.points)
print("Entropy from wnn bootstrap: %s"%str(S_wnn))
# Try wnn entropy with thinning ... still no good.
#drawn = self.draw(portion=portion, vars=vars,
# selection=selection, thin=10)
with T(): S_wnn, Serr_wnn = entropy.wnn_entropy(points)
print("Entropy from wnn: %s"%str(S_wnn))
# Try wnn with gmm ... still no good
with T(): S_wnn, Serr_wnn = entropy.wnn_entropy(drawn.points, n_est=20000, gmm=20)
print("Entropy from wnn with gmm: %s"%str(S_wnn))
# Try pure gmm ... pretty good
with T(): S_gmm, Serr_gmm = entropy.gmm_entropy(drawn.points, n_est=10000)
print("Entropy from gmm: %s"%str(S_gmm))
# Try kde from statsmodels ... pretty good
with T(): S_kde_stats = entropy.kde_entropy_statsmodels(drawn.points, n_est=10000)
print("Entropy from kde statsmodels: %s"%str(S_kde_stats))
# Try kde from sklearn ... pretty good
with T(): S_kde = entropy.kde_entropy_sklearn(drawn.points, n_est=10000)
print("Entropy from kde sklearn: %s"%str(S_kde))
# Try kde from sklearn at points from gmm ... pretty good
with T(): S_kde_gmm = entropy.kde_entropy_sklearn_gmm(drawn.points, n_est=10000)
print("Entropy from kde+gmm: %s"%str(S_kde_gmm))
# Try Kramer ... pretty good, but doesn't support marginal entropy
with T(): S, Serr = entropy.entropy(drawn.points, drawn.logp, N_entropy=n_est)
print("Entropy from Kramer: %s"%str(S))
.. [#Kramer]
Kramer, A., Hasenauer, J., Allgower, F., Radde, N., 2010.
Computation of the posterior entropy in a Bayesian framework
for parameter estimation in biological networks,
in: 2010 IEEE International Conference on Control Applications (CCA).
Presented at the 2010 IEEE International Conference on
Control Applications (CCA), pp. 493-498.
doi:10.1109/CCA.2010.5611198
.. [#Turjillo-Ortiz]
Trujillo-Ortiz, A. and R. Hernandez-Walls. (2003). Mskekur: Mardia's
multivariate skewness and kurtosis coefficients and its hypotheses
testing. A MATLAB file. [WWW document].
`<http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=3519>`_
.. [#Mardia1970]
Mardia, K. V. (1970), Measures of multivariate skewnees and kurtosis with
applications. Biometrika, 57(3):519-530.
.. [#Mardia1974]
Mardia, K. V. (1974), Applications of some measures of multivariate skewness
and kurtosis for testing normality and robustness studies. Sankhy A,
36:115-128
.. [#Stevens]
Stevens, J. (1992), Applied Multivariate Statistics for Social Sciences.
2nd. ed. New-Jersey:Lawrance Erlbaum Associates Publishers. pp. 247-248.
"""
from __future__ import division, print_function
__all__ = ["entropy", "gmm_entropy", "cov_entropy", "wnn_entropy", "MVNEntropy"]
import numpy as np
from numpy import mean, std, exp, log, sqrt, log2, pi, e, nan
from numpy.random import permutation, choice
from scipy import stats
from scipy.stats import norm, chi2
from scipy.special import gammaln, digamma
LN2 = log(2)
def standardize(x):
"""
Standardize the points by removing the mean and scaling by the standard
deviation.
"""
# TODO: check if it is better to multiply by inverse covariance
# That would serve to unrotate and unscale the dimensions together,
# but squishing them down individually might be just as good.
# compute zscores for the each variable independently
mu, sigma = mean(x, axis=0), std(x, axis=0, ddof=1)
# Protect against NaN when sigma is zero. If sigma is zero
# then all points are equal, so x == mu and z-score is zero.
return (x - mu)/(sigma + (sigma==0.)), mu, sigma
def kde_entropy_statsmodels(points, n_est=None):
"""
Use statsmodels KDEMultivariate pdf to estimate entropy.
Density evaluated at sample points.
Slow and fails for bimodal, dirichlet; poor for high dimensional MVN.
"""
from statsmodels.nonparametric.kernel_density import KDEMultivariate
n, d = points.shape
# Default to the full set
if n_est is None:
n_est = n
# reduce size of draw to n_est
if n_est >= n:
x = points
else:
x = points[permutation(n)[:n_est]]
n = n_est
predictor = KDEMultivariate(data=x, var_type='c'*d)
p = predictor.pdf()
H = -np.mean(log(p))
return H / LN2
def kde_entropy_sklearn(points, n_est=None):
"""
Use sklearn.neigbors.KernelDensity pdf to estimate entropy.
Data is standardized before analysis.
Sample points drawn from the kernel density estimate.
Fails for bimodal and dirichlet, similar to statsmodels kde.
"""
n, d = points.shape
# Default to the full set
if n_est is None:
n_est = n
# reduce size of draw to n_est
if n_est >= n:
x = points
else:
x = points[permutation(n)[:n_est]]
n = n_est
#logp = sklearn_log_density(points, evaluation_points=n_est)
logp = sklearn_log_density(x, evaluation_points=x)
H = -np.mean(logp)
return H / LN2
def kde_entropy_sklearn_gmm(points, n_est=None, n_components=None):
"""
Use sklearn.neigbors.KernelDensity pdf to estimate entropy.
Data is standardized before kde.
Sample points drawn from gaussian mixture model from original points.
Fails for bimodal and dirichlet, similar to statsmodels kde.
"""
from sklearn.mixture import BayesianGaussianMixture as GMM
n, d = points.shape
# Default to the full set
if n_est is None:
n_est = n
# reduce size of draw to n_est
if n_est >= n:
x = points
else:
x = points[permutation(n)[:n_est]]
n = n_est
if n_components is None:
n_components = int(5*sqrt(d))
predictor = GMM(n_components=n_components, covariance_type='full',
#verbose=True,
max_iter=1000)
predictor.fit(x)
evaluation_points, _ = predictor.sample(n_est)
logp = sklearn_log_density(x, evaluation_points=evaluation_points)
H = -np.mean(logp)
return H / LN2
def gmm_entropy(points, n_est=None, n_components=None):
r"""
Use sklearn.mixture.BayesianGaussianMixture to estimate entropy.
*points* are the data points in the sample.
*n_est* are the number of points to use in the estimation; default is
10,000 points, or 0 for all the points.
*n_components* are the number of Gaussians in the mixture. Default is
$5 \sqrt{d}$ where $d$ is the number of dimensions.
Returns estimated entropy and uncertainty in the estimate.
This method uses BayesianGaussianMixture from scikit-learn to build a
model of the point distribution, then uses Monte Carlo sampling to
determine the entropy of that distribution. The entropy uncertainty is
computed from the variance in the MC sample scaled by the number of
samples. This does not incorporate any uncertainty in the sampling that
generated the point distribution or the uncertainty in the GMM used to
model that distribution.
"""
#from sklearn.mixture import GaussianMixture as GMM
from sklearn.mixture import BayesianGaussianMixture as GMM
n, d = points.shape
# Default to the full set
if n_est is None:
n_est = 10000
elif n_est == 0:
n_est = n
# reduce size of draw to n_est
if n_est >= n:
x = points
n_est = n
else:
x = points[permutation(n)[:n_est]]
n = n_est
if n_components is None:
n_components = int(5*sqrt(d))
## Standardization doesn't seem to help
## Note: sigma may be zero
#x, mu, sigma = standardize(x) # if standardized
predictor = GMM(n_components=n_components, covariance_type='full',
#verbose=True,
max_iter=1000)
predictor.fit(x)
eval_x, _ = predictor.sample(n_est)
weight_x = predictor.score_samples(eval_x)
H = -np.mean(weight_x)
#with np.errstate(divide='ignore'): H = H + np.sum(np.log(sigma)) # if standardized
dH = np.std(weight_x, ddof=1) / sqrt(n)
## cross-check against own calcs
#alt = GaussianMixture(predictor.weights_, mu=predictor.means_, sigma=predictor.covariances_)
#print("alt", H, alt.entropy())
#print(np.vstack((weight_x[:10], alt.logpdf(eval_x[:10]))).T)
return H / LN2, dH / LN2
def wnn_bootstrap(points, k=None, weights=True, n_est=None, reps=10, parts=10):
#raise NotImplementedError("deprecated; bootstrap doesn't help.")
n, d = points.shape
if n_est is None:
n_est = n//parts
results = [wnn_entropy(points, k=k, weights=weights, n_est=n_est)
for _ in range(reps)]
#print(results)
S, Serr = list(zip(*results))
return np.mean(S), np.std(S)
def wnn_entropy(points, k=None, weights=True, n_est=None, gmm=None):
r"""
Weighted Kozachenko-Leonenko nearest-neighbour entropy calculation.
*k* is the number of neighbours to consider, with default $k=n^{1/3}$
*n_est* is the number of points to use for estimating the entropy,
with default $n_\rm{est} = n$
*weights* is True for default weights, False for unweighted (using the
distance to the kth neighbour only), or a vector of weights of length *k*.
*gmm* is the number of gaussians to use to model the distribution using
a gaussian mixture model. Default is 0, and the points represent an
empirical distribution.
Returns entropy H in bits and its uncertainty.
Berrett, T. B., Samworth, R.J., Yuan, M., 2016. Efficient multivariate
entropy estimation via k-nearest neighbour distances.
DOI:10.1214/18-AOS1688 https://arxiv.org/abs/1606.00304
"""
from sklearn.neighbors import NearestNeighbors
n, d = points.shape
# Default to the full set
if n_est is None:
n_est = 10000
elif n_est == 0:
n_est = n
# reduce size of draw to n_est
if n_est >= n:
x = points
n_est = n
else:
x = points[permutation(n)[:n_est]]
n = n_est
# Default k based on n
if k is None:
# Private communication: cube root of n is a good choice for k
# Personal observation: k should be much bigger than d
k = max(int(n**(1/3)), 3*d)
# If weights are given then use them (setting the appropriate k),
# otherwise use the default weights.
if isinstance(weights, bool):
weights = _wnn_weights(k, d, weights)
else:
k = len(weights)
#print("weights", weights, sum(weights))
# select knn algorithm
algorithm = 'auto'
#algorithm = 'kd_tree'
#algorithm = 'ball_tree'
#algorithm = 'brute'
n_components = 0 if gmm is None else gmm
# H = 1/n sum_i=1^n sum_j=1^k w_j log E_{j,i}
# E_{j,i} = e^-Psi(j) V_d (n-1) z_{j,i}^d = C z^d
# logC = -Psi(j) + log(V_d) + log(n-1)
# H = 1/n sum sum w_j logC + d/n sum sum w_j log(z)
# = sum w_j logC + d/n sum sum w_j log(z)
# = A + d/n B
# H^2 = 1/n sum
Psi = digamma(np.arange(1, k+1))
logVd = d/2*log(pi) - gammaln(1 + d/2)
logC = -Psi + logVd + log(n-1)
# TODO: standardizing points doesn't work.
# Standardize the data so that distances conform. This is equivalent to
# a u-substitution u = sigma x + mu, so the integral needs to be corrected
# for dU = det(sigma) dx. Since the standardization squishes the dimensions
# independently, sigma is a diagonal matrix, with the determinant equal to
# the product of the diagonal elements.
#x, mu, sigma = standardize(x) # Note: sigma may be zero
#detDU = np.prod(sigma)
detDU = 1.
if n_components > 0:
# Use Gaussian mixture to model the distribution
from sklearn.mixture import GaussianMixture as GMM
predictor = GMM(n_components=gmm, covariance_type='full')
predictor.fit(x)
eval_x, _ = predictor.sample(n_est)
#weight_x = predictor.score_samples(eval_x)
skip = 0
else:
# Empirical distribution
# TODO: should we use the full draw for kNN and a subset for eval points?
# Choose a subset for evaluating the entropy estimate, if desired
#print(n_est, n)
#eval_x = x if n_est >= n else x[permutation(n)[:n_est]]
eval_x = x
#weight_x = 1
skip = 1
tree = NearestNeighbors(algorithm=algorithm, n_neighbors=k+skip)
tree.fit(x)
dist, _ind = tree.kneighbors(eval_x, n_neighbors=k+skip, return_distance=True)
# Remove first column. Since test points are in x, the first column will
# be a point from x with distance 0, and can be ignored.
if skip:
dist = dist[:, skip:]
# Find log distances. This can be problematic for MCMC runs where a
# step is rejected, and therefore identical points are in the distribution.
# Ignore them by replacing these points with nan and using nanmean.
# TODO: need proper analysis of duplicated points in MCMC chain
dist[dist == 0] = nan
logdist = log(dist)
H_unweighted = logC + d*np.nanmean(logdist, axis=0)
H = np.dot(H_unweighted, weights)[0]
Hsq_k = np.nanmean((logC[-1] + d*logdist[:,-1])**2)
# TODO: abs shouldn't be needed?
if Hsq_k < H**2:
print("warning: avg(H^2) < avg(H)^2")
dH = sqrt(abs(Hsq_k - H**2)/n_est)
#print("unweighted", H_unweighted)
#print("weighted", H, Hsq_k, H**2, dH, detDU, LN2)
return H * detDU / LN2, dH * detDU / LN2
def _wnn_weights(k, d, weighted=True):
# Private communication: ignore w_j = 0 constraints (they are in the
# paper for mathematical nicety), and find the L2 norm of the
# remaining underdeterimined system described in Eq 2.
# Personal observation: k should be some small multiple of d
# otherwise the weights blow up.
if d < 4 or not weighted:
# with few dimensions go unweighted with the kth nearest neighbour.
return np.array([[0.]*(k-1) + [1.]]).T
j = np.arange(1, k+1)
sum_zero = [exp(gammaln(j+2*i/d)-gammaln(j)) for i in range(1, d//4+1)]
sum_one = [[1.]*k]
A = np.array(sum_zero + sum_one)
b = np.array([[0.]*(d//4)+[1.]]).T
return np.dot(np.linalg.pinv(A), b)
def scipy_stats_density(sample_points, evaluation_points): # pragma: no cover
"""
Estimate the probability density function from which a set of sample
points was drawn and return the estimated density at the evaluation points.
"""
## standardize data so that we can use uniform bandwidth
## Note: this didn't help with singular matrix
## Note: if re-enable, protect against sigma=0 in some dimensions
#mu, sigma = mean(data, axis=0), std(data, axis=0)
#data,points = (data - mu)/sigma, (points - mu)/sigma
kde = stats.gaussian_kde(sample_points)
return kde(evaluation_points)
def sklearn_log_density(sample_points, evaluation_points):
"""
Estimate the log probability density function from which a set of sample
points was drawn and return the estimated density at the evaluation points.
*sample_points* is an [n x m] matrix.
*evaluation_points* is the set of points at which to evaluate the kde.
Note: if any dimension has all points equal then the entire distribution
is treated as a dirac distribution with infinite density at each point.
This makes the entropy calculation better behaved (narrowing the
distribution increases the entropy) but is not so useful in other contexts.
Other packages will (correctly) ignore dimensions of width zero.
"""
# Ugly hack warning: if *evaluation_points* is an integer, then sample
# that many points from the kde and return the log density at each
# sampled point. Since the code that uses this is looking only at
# the mean log density, it doesn't need the sample points themselves.
# This interface should be considered internal to the entropy module
# and not used by outside functions. If you need it externally, then
# restructure the api so that the function always returns both the
# points and the density, as well as any other function (such as the
# denisty function and the sister function scipy_stats_density) so
# that all share the new interface.
from sklearn.neighbors import KernelDensity
# Standardize data so we can use spherical kernels and uniform bandwidth
data, mu, sigma = standardize(sample_points)
# Note that sigma will be zero for dimensions w_o where all points are equal.
# With P(w) = P(w, w_o) / P(w_o | w) and P(w_o) = 1 for all points in
# the set, then P(w) = P(w, w_o) and we can ignore the zero dimensions.
# However, as another ugly hack, we want the differential entropy to go
# to -inf as the distribution narrows, so pretend that P = 0 everywhere.
# Uncomment the following line to return the sample probability instead.
## sigma[sigma == 0.] = 1.
# Silverman bandwidth estimator
n, d = sample_points.shape
bandwidth = (n * (d + 2) / 4.)**(-1. / (d + 4))
#print("starting grid search for bandwidth over %d points"%n)
#from sklearn.grid_search import GridSearchCV
#from numpy import logspace
#params = {'bandwidth': logspace(-1, 1, 20)}
#fitter = GridSearchCV(KernelDensity(), params)
#fitter.fit(data)
#kde = fitter.best_estimator_
#print("best bandwidth: {0}".format(kde.bandwidth))
#import time; T0 = time.time()
kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth,
rtol=1e-6, atol=1e-6)
kde.fit(data)
if isinstance(evaluation_points, int):
# For generated points, they already follow the distribution
points = kde.sample(n)
elif evaluation_points is not None:
# Standardized evaluation points to match sample distribution
# Note: for dimensions where all sample points are equal, sigma
# has been artificially set equal to one. This means that the
# evaluation points which do not match the sample value will
# use the simple differences for the z-score rather than
# pushing them out to plus/minus infinity.
points = (evaluation_points - mu)/(sigma + (sigma == 0.))
else:
points = sample_points
# Evaluate pdf, scaling the resulting density by sigma to correct the area.
# If sigma is zero, return entropy as -inf; this seems to not be the
# case for discrete distributions (consider Bernoulli with p=1, q=0,
# => H = -p log p - q log q = 0), so need to do something else, both
# for the kde and for the entropy calculation.
with np.errstate(divide='ignore'):
log_pdf = kde.score_samples(points) - np.sum(np.log(sigma))
return log_pdf
def sklearn_density(sample_points, evaluation_points):
"""
Estimate the probability density function from which a set of sample
points was drawn and return the estimated density at the evaluation points.
"""
return exp(sklearn_log_density(sample_points, evaluation_points))
# scipy kde fails with singular matrix, so we will use scikit.learn
#density = scipy_stats_density
density = sklearn_density
def entropy(points, logp, N_entropy=10000, N_norm=2500):
r"""
Return entropy estimate and uncertainty from a random sample.
*points* is a set of draws from an underlying distribution, as returned
by a Markov chain Monte Carlo process for example.
*logp* is the log-likelihood for each draw.
*N_norm* is the number of points $k$ to use to estimate the posterior
density normalization factor $P(D) = \hat N$, converting
from $\log( P(D|M) P(M) )$ to $\log( P(D|M)P(M)/P(D) )$. The relative
uncertainty $\Delta\hat S/\hat S$ scales with $\sqrt{k}$, with the
default *N_norm=2500* corresponding to 2% relative uncertainty.
Computation cost is $O(nk)$ where $n$ is number of points in the draw.
*N_entropy* is the number of points used to estimate the entropy
$\hat S = - \int P(M|D) \log P(M|D)$ from the normalized log likelihood
values.
"""
# Use a random subset to estimate density
if N_norm >= len(logp):
norm_points = points
else:
idx = permutation(len(points))[:N_entropy]
norm_points = points[idx]
# Use a different subset to estimate the scale factor between density
# and logp.
if N_entropy is None:
N_entropy = 10000
if N_entropy >= len(logp):
entropy_points, eval_logp = points, logp
else:
idx = permutation(len(points))[:N_entropy]
entropy_points, eval_logp = points[idx], logp[idx]
"""
# Try again, just using the points from the high probability regions
# to determine the scale factor
N_norm = min(len(logp), 5000)
N_entropy = int(0.8*N_norm)
idx = np.argsort(logp)
norm_points = points[idx[-N_norm:]]
entropy_points = points[idx[-N_entropy:]]
eval_logp = logp[idx[-N_entropy:]]
"""
# Normalize p to a peak probability of 1 so that exp() doesn't underflow.
#
# This should be okay since for the normalizing constant C:
#
# u' = e^(ln u + ln C) = e^(ln u)e^(ln C) = C u
#
# Using eq. 11 of Kramer with u' substituted for u:
#
# N_est = < u'/p > = < C u/p > = C < u/p >
#
# S_est = - < ln q >
# = - < ln (u'/N_est) >
# = - < ln C + ln u - ln (C <u/p>) >
# = - < ln u + ln C - ln C - ln <u/p> >
# = - < ln u - ln <u/p> >
# = - < ln u > + ln <u/p>
#
# Uncertainty comes from eq. 13:
#
# N_err^2 = 1/(k-1) sum( (u'/p - <u'/p>)^2 )
# = 1/(k-1) sum( (C u/p - <C u/p>)^2 )
# = C^2 std(u/p)^2
# S_err = std(u'/p) / <u'/p> = (C std(u/p))/(C <u/p>) = std(u/p)/<u/p>
#
# So even though the constant C shows up in N_est, N_err, it cancels
# again when S_est, S_err is formed.
log_scale = np.max(eval_logp)
# print("max log sample: %g"%log_scale)
eval_logp -= log_scale
# Compute entropy and uncertainty in nats
# Note: if all values are the same in any dimension then we have a dirac
# functional with infinite probability at every sample point, and the
# differential entropy estimate will yield H = -inf.
rho = density(norm_points, entropy_points)
#print(rho.min(), rho.max(), eval_logp.min(), eval_logp.max())
frac = exp(eval_logp)/rho
n_est, n_err = mean(frac), std(frac)
if n_est == 0.:
s_est, s_err = -np.inf, 0.
else:
s_est = log(n_est) - mean(eval_logp)
s_err = n_err/n_est
#print(n_est, n_err, s_est/LN2, s_err/LN2)
##print(np.median(frac), log(np.median(frac))/LN2, log(n_est)/LN2)
if False:
import pylab
idx = pylab.argsort(entropy_points[:, 0])
pylab.figure()
pylab.subplot(221)
pylab.hist(points[:, 0], bins=50, density=True, log=True)
pylab.plot(entropy_points[idx, 0], rho[idx], label='density')
pylab.plot(entropy_points[idx, 0], exp(eval_logp+log_scale)[idx], label='p')
pylab.ylabel("p(x)")
pylab.legend()
pylab.subplot(222)
pylab.hist(points[:, 0], bins=50, density=True, log=False)
pylab.plot(entropy_points[idx, 0], rho[idx], label='density')
pylab.plot(entropy_points[idx, 0], exp(eval_logp+log_scale)[idx], label='p')
pylab.ylabel("p(x)")
pylab.legend()
pylab.subplot(212)
pylab.plot(entropy_points[idx, 0], frac[idx], '.')
pylab.xlabel("P[0] value")
pylab.ylabel("p(x)/kernel density")
# return entropy and uncertainty in bits
return s_est/LN2, s_err/LN2
class MVNEntropy(object):
"""
Multivariate normal entropy approximation.
Uses Mardia's multivariate skewness and kurtosis test to estimate normality.
*x* is a set of points
*alpha* is the cutoff for the normality test.
*max_points* is the maximum number of points to use when checking
normality. Since the normality test is $O(n^2)$ in memory and time,
where $n$ is the number of points, *max_points* defaults to 1000. The
entropy is computed from the full dataset.
The returned object has the following attributes:
*p_kurtosis* is the p-value for the kurtosis normality test
*p_skewness* is the p-value for the skewness normality test
*reject_normal* is True if either the the kurtosis or the skew test
fails
*entropy* is the estimated entropy of the best normal approximation
to the distribution
"""
# TODO: use robust covariance estimator for mean and covariance
# FastMSD is available in sklearn.covariance.MinDetCov. There are methods
# such as (Zhahg, 2012), which may be faster if performance is an issue.
# [1] Zhang (2012) DOI: 10.5539/ijsp.v1n2p119
def __init__(self, x, alpha=0.05, max_points=1000):
# compute Mardia test coefficient
n, p = x.shape # num points, num dimensions
mu = np.mean(x, axis=0)
C = np.cov(x.T, bias=1) if p > 1 else np.array([[np.var(x.T, ddof=1)]])
# squared Mahalanobis distance matrix
# Note: this forms a full n x n matrix of distances, so will
# fail for a large number of points. Kurtosis only requires
# the diagonal elements so can be computed cheaply. If there
# is no order to the points, skew could be estimated using only
# the block diagonal
dx = (x - mu[None, :])[:max_points]
D = np.dot(dx, np.linalg.solve(C, dx.T))
kurtosis = np.sum(np.diag(D)**2)/n
skewness = np.sum(D**3)/n**2
kurtosis_stat = (kurtosis - p*(p+2)) / sqrt(8*p*(p+2)/n)
raw_skewness_stat = n*skewness/6
# Small sample correction converges to 1 as n increases, so it is
# always safe to apply it
small_sample_correction = (p+1)*(n+1)*(n+3)/((p+1)*(n+1)*n - n*6)
skewness_stat = raw_skewness_stat * small_sample_correction
dof = (p*(p+1)*(p+2))/6 # degrees of freedom for chisq test
self.p_kurtosis = 2*(1 - norm.cdf(abs(kurtosis_stat)))
self.p_skewness = 1 - chi2.cdf(skewness_stat, dof)
self.reject_normal = self.p_kurtosis < alpha or self.p_skewness < alpha
#print("kurtosis", kurtosis, kurtosis_stat, self.p_kurtosis)
#print("skewness", skewness, skewness_stat, self.p_skewness)
# compute entropy
self.entropy = cov_entropy(C)
def __str__(self):
return "H=%.1f bits%s"%(self.entropy, " (not normal)" if self.reject_normal else "")
def cov_entropy(C):
"""
Entropy estimate from covariance matrix C
"""
return 0.5 * (len(C) * log2(2*pi*e) + log2(abs(np.linalg.det(C))))
def mvn_entropy_bootstrap(points, samples=50):
"""
Use bootstrap method to estimate entropy and its uncertainty
"""
n, d = points.shape
results = []
for _ in range(samples):
# sample n points with replacement in 0 ... n-1.
x = points[choice(n, size=n)]
C = np.cov(x.T, bias=1) if d > 1 else np.array([[np.var(x.T, ddof=1)]])
#print(f"cov {samples}, {x.shape}, {C.shape}")
results.append(cov_entropy(C))
return np.mean(results), np.std(results)
# ======================================================================
# Testing code
# ======================================================================
# Based on: Eli Bendersky https://stackoverflow.com/a/5849861
# Extended with tic/toc by Paul Kienzle
import time
class Timer(object):
@staticmethod
def tic(name=None):
return Timer(name).toc
def __init__(self, name=None):
self.name = name
self.step_number = 0
self.tlast = self.tstart = time.time()
def toc(self, step=None):
self.step_number += 1
if step is None:
step = str(self.step_number)
label = self.name + "-" + step if self.name else step
tnext = time.time()
total = tnext - self.tstart
delta = tnext - self.tlast
print('[%s] Elapsed: %s, Delta: %s' % (label, total, delta))
self.tlast = tnext
def __enter__(self):
self.tlast = self.tstart = time.time()
def __exit__(self, type, value, traceback):
if self.name:
print('[%s]' % self.name, end='')
print('Elapsed: %s' % (time.time() - self.tstart))
def entropy_mc(D, N=1000000):
logp = D.logpdf(D.rvs(N))
return -np.mean(logp)
#return -np.mean(logp[np.isfinite(logp)])
# CRUFT: dirichlet needs transpose of theta for logpdf
class Dirichlet:
def __init__(self, alpha):
self.alpha = alpha
self._dist = stats.dirichlet(alpha)
self.dim = len(alpha)
def logpdf(self, theta):
return self._dist.logpdf(theta.T)
def rvs(self, *args, **kw):
x = self._dist.rvs(*args, **kw)
# Dirichlet logpdf is failing if x=0 for any x when alpha<1.
# The simplex check allows fudge of 1e-10.
x[x==0] = 1e-100
return x
def entropy(self, *args, **kw):
return self._dist.entropy(*args, **kw)
class Box:
def __init__(self, width=None, center=None):
if width is None:
width = np.ones(len(center), dtype='d')
if center is None:
center = np.zeros(len(width), dtype='d')
self.center = center
self.width = width
self.dim = len(width)
self._logpdf = -np.sum(np.log(self.width))
def rvs(self, size=1):
x = np.random.rand(size, len(self.width))
x = (x-0.5)*self.width + self.center
return x
def logpdf(self, theta):
y = (theta - self.center)/self.width + 0.5
logp = np.ones(len(theta)) * self._logpdf
logp[np.any(y<0, axis=1)] = -np.inf
logp[np.any(y>1, axis=1)] = -np.inf
return logp
def entropy(self):
return -self._logpdf
# CRUFT: scipy MVN gives wrong entropy for singular (and near singular) matrices
# This solution gives wrong results for near-singular rvs(), but for the simple
# case of a diagonal Sigma with one zero it does what I need for the test.
class MVNSingular:
def __init__(self, *args, **kw):
kw['allow_singular'] = True
self.dist = stats.multivariate_normal(*args, **kw)
@property
def dim(self):
return self.dist.dim
def pdf(self, theta):
return self.dist.pdf(theta)
def logpdf(self, theta):
return self.dist.logpdf(theta)
def rvs(self, size=1):
return self.dist.rvs(size=size)
def entropy(self, N=10000):
# CRUFT scipy==1.10.0: scipy.stats briefly removed the dist.cov attribute.
if hasattr(self.dist, 'cov'):
cov = self.dist.cov
else:
cov = self.dist.cov_object.covariance
with np.errstate(divide='ignore'):
return 0.5*log(np.linalg.det((2*pi*np.e)*cov))
class GaussianMixture:
def __init__(self, w, mu=None, sigma=None):
mu = np.asarray(mu)
dim = mu.shape[1]
if sigma is None:
sigma = [None] * len(mu)
sigma = [(np.ones(dim) if s is None else np.asarray(s)) for s in sigma]
sigma = [(np.diag(s) if len(s.shape) == 1 else s) for s in sigma]
self.dim = dim
self.weight = np.asarray(w, 'd')/np.sum(w)
self.dist = [stats.multivariate_normal(mean=m, cov=s)
for m, s in zip(mu, sigma)]
def pdf(self, theta):
return sum(w*D.pdf(theta) for w, D in zip(self.weight, self.dist))
def logpdf(self, theta):
return log(self.pdf(theta))
def rvs(self, size=1):
# TODO: should randomize the output
sizes = partition(size, self.weight)
draws = [D.rvs(size=n) for n, D in zip(sizes, self.dist)]
return np.random.permutation(np.vstack(draws))
def entropy(self, N=10000):
# No analytic expression, so estimate entropy using MC integration
return entropy_mc(self, N=N)
class MultivariateT:
def __init__(self, mu=None, sigma=None, df=None):
if sigma is not None:
sigma = np.asarray(sigma)
self.mu = np.zeros(sigma.shape[0]) if mu is None else np.asarray(mu)
if sigma is None:
sigma = np.ones(len(mu))
if len(sigma.shape) == 1:
sigma = np.diag(sigma)
self.dim = len(self.mu)
self.sigma = sigma
self.df = df
# Use scipy stats to compute |Sigma| and (x-mu)^T Sigma^{-1} (x - mu),
# and to estimate dimension p from rank. Formula for pdf from wikipedia
# https://en.wikipedia.org/wiki/Multivariate_t-distribution
from scipy.stats._multivariate import _PSD
self._psd = _PSD(self.sigma)
nu, p = self.df, self._psd.rank
self._log_norm = (gammaln((nu + p)/2)
- gammaln(nu/2)
- p/2*log(pi*nu)
- self._psd.log_pdet/2
)
def logpdf(self, theta):
dev = theta - self.mu
maha = np.sum(np.square(np.dot(dev, self._psd.U)), axis=-1)
nu, p = self.df, self._psd.rank
return self._log_norm - (nu+p)/2 * np.log1p(maha/nu)
def pdf(self, theta):
return exp(self.logpdf(theta))
def rvs(self, size=1):
# From farhawa on stack overflow
# https://stackoverflow.com/questions/29798795/multivariate-student-t-distribution-with-python
nu, p = self.df, len(self.mu)
g = np.tile(np.random.gamma(nu/2, 2/nu, size=size), (p, 1)).T
Z = np.random.multivariate_normal(np.zeros(p), self.sigma, size=size)
return self.mu + Z/np.sqrt(g)
def entropy(self, N=100000):
# No analytic expression, so estimate entropy using MC integration
return entropy_mc(self, N=N)
def MultivariateCauchy(mu=None, sigma=None):
return MultivariateT(mu=mu, sigma=sigma, df=1)
class Joint:
def __init__(self, distributions):
# Note: list(x) converts any sequence, including generators, into a list
self.distributions = list(distributions)
self.dim = len(self.distributions)
def rvs(self, size=1):
return np.stack([D.rvs(size=size) for D in self.distributions], axis=-1)
def pdf(self, theta):
return exp(self.logpdf(theta))
def logpdf(self, theta):
return sum(D.logpdf(theta[..., k]) for k, D in enumerate(self.distributions))
def cdf(self, theta):
return exp(self.logcdf(theta))
def logcdf(self, theta):
return sum(D.logcdf(theta[..., k]) for k, D in enumerate(self.distributions))
def sf(self, theta):
return -np.expm1(self.logcdf(theta))
def logsf(self, theta):
return log(self.sf(theta))
def entropy(self):
return sum(D.entropy() for D in self.distributions)
def partition(n, w):
# TODO: build an efficient algorithm for splitting n things into k buckets
indices = np.arange(len(w), dtype='i')
choices = np.random.choice(indices, size=n, replace=True, p=w)
bins = np.arange(len(w) + 1, dtype='f') - 0.5
sizes, _ = np.histogram(choices, bins=bins)
return sizes
def _check_entropy(name, D, seed=1, N=10000, N_entropy=None, N_norm=2500, demo=False):
"""
Check if entropy from a random draw matches analytic entropy.
"""
use_kramer = use_mvn = use_wnn = use_gmm = use_kde = False
if demo:
#use_kramer = True
#use_wnn = True
use_mvn = True
use_gmm = True
use_kde = True
else:
use_kramer = True
state = np.random.get_state()
np.random.seed(seed)
try:
theta = D.rvs(size=N)
if getattr(D, 'dim', 1) == 1:
theta = theta.reshape(N, 1)
if use_kramer:
logp_theta = D.logpdf(theta)