-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added files related to Quantum Attacks on EM cipher.
- Loading branch information
Showing
2 changed files
with
229 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,188 @@ | ||
#!/usr/bin/python3 | ||
import qcircuits as qc | ||
import numpy as np | ||
import sys | ||
def Circuits(x): | ||
#print("*********** Circuit Input: (x) ****************") | ||
#print(x) | ||
CNOT = qc.CNOT() | ||
X = qc.PauliX() | ||
toffoli = qc.operators.Toffoli() | ||
#---------------------------------------------------- | ||
#First copy | ||
for i in range(0,10): | ||
#print("\n******* x before ********\n") | ||
#print(x) | ||
x = CNOT(x,qubit_indices = [i,i+10]) | ||
#print("\n******* x after ********\n") | ||
#print(x) | ||
#------------------------------------------------------ | ||
#Adding the key | ||
x = X(x,qubit_indices = [10]) | ||
x = X(x,qubit_indices = [13]) | ||
x = X(x,qubit_indices = [19]) | ||
#----------------------------------------------------- | ||
#Permutation over the first register | ||
x = toffoli(x,qubit_indices = [0,1,2]) | ||
x = toffoli(x,qubit_indices = [1,2,3]) | ||
x = toffoli(x,qubit_indices = [2,3,4]) | ||
x = toffoli(x,qubit_indices = [3,4,5]) | ||
x = toffoli(x,qubit_indices = [4,5,6]) | ||
x = toffoli(x,qubit_indices = [5,6,7]) | ||
x = toffoli(x,qubit_indices = [6,7,8]) | ||
x = toffoli(x,qubit_indices = [8,9,0]) | ||
x = toffoli(x,qubit_indices = [9,0,1]) | ||
#----------------------------------------------------- | ||
#Permutation over the second register | ||
x = toffoli(x,qubit_indices = [10,11,12]) | ||
x = toffoli(x,qubit_indices = [11,12,13]) | ||
x = toffoli(x,qubit_indices = [12,13,14]) | ||
x = toffoli(x,qubit_indices = [13,14,15]) | ||
x = toffoli(x,qubit_indices = [14,15,16]) | ||
x = toffoli(x,qubit_indices = [15,16,17]) | ||
x = toffoli(x,qubit_indices = [16,17,18]) | ||
x = toffoli(x,qubit_indices = [18,19,10]) | ||
x = toffoli(x,qubit_indices = [19,10,11]) | ||
#----------------------------------------------------- | ||
#Compute P(x) xor P(x xor k) | ||
for i in range(0,10): | ||
x = CNOT(x,qubit_indices = [i,i + 10]) | ||
#------------------------------------------------------ | ||
#Adding the second key | ||
x = X(x,qubit_indices = [10]) | ||
x = X(x,qubit_indices = [16]) | ||
x = X(x,qubit_indices = [17]) | ||
x = X(x,qubit_indices = [19]) | ||
#------------------------------------------------------ | ||
return x | ||
|
||
def SimonEM(): | ||
X = qc.PauliX() | ||
#print("\n******* Pauli X ********\n") | ||
#print(X) | ||
#print("\n******* CNOT ********\n") | ||
CNOT = qc.CNOT() | ||
#print(CNOT) | ||
#print("\n******* toffoli ********\n") | ||
toffoli = qc.operators.Toffoli() | ||
#print(toffoli) | ||
H10 = qc.operators.Hadamard(d = 10) | ||
#print("\n******* Hadamard Gate ********\n") | ||
#print(H10) | ||
phi = qc.positive_superposition(d = 10) | ||
#print("\n******* positive superposition ********\n") | ||
#print(phi) | ||
ksi = qc.zeros(10) | ||
#print("\n******* ksi qubit ********\n") | ||
#print(ksi) | ||
Phi = phi*ksi | ||
#print("\n******* Phi = phi * ksi ********\n") | ||
#print(Phi) | ||
Phi = Circuits(Phi) | ||
#We apply the inverse of the Permutation | ||
#-------------------------------------------------------- | ||
Phi = toffoli(Phi,qubit_indices = [9,0,1]) | ||
Phi = toffoli(Phi,qubit_indices = [8,9,0]) | ||
Phi = toffoli(Phi,qubit_indices = [6,7,8]) | ||
Phi = toffoli(Phi,qubit_indices = [5,6,7]) | ||
Phi = toffoli(Phi,qubit_indices = [4,5,6]) | ||
Phi = toffoli(Phi,qubit_indices = [3,4,5]) | ||
Phi = toffoli(Phi,qubit_indices = [2,3,4]) | ||
Phi = toffoli(Phi,qubit_indices = [1,2,3]) | ||
Phi = toffoli(Phi,qubit_indices = [0,1,2]) | ||
#-------------------------------------------------------- | ||
#We measure the last register | ||
Phi.measure(qubit_indices = [10,11,12,13,14,15,16,17,18,19],remove = True) | ||
#On applique la transformé de Hadamard sur les premier registres | ||
Phi = H10(Phi,qubit_indices = [0,1,2,3,4,5,6,7,8,9]) | ||
#-------------------------------------------------------- | ||
#We measure the first register | ||
Phi.measure(qubit_indices = [0,1,2,3,4,5,6,7,8,9],remove = False) | ||
return Phi | ||
|
||
|
||
def QubitToVector(v): | ||
for t in range(0,len(v)): | ||
if((v[t] == 1) or (v[t] == -1)): | ||
indice = t | ||
break | ||
else: | ||
pass | ||
x = bin(t) | ||
return x | ||
|
||
def ReduceM(M): | ||
Index = [] | ||
count = 0 | ||
for i in range(0,len(M)): | ||
count = 0 | ||
for j in range(0,10): | ||
if(M[i,j] == 1): | ||
count += 1 | ||
if(count == 0): | ||
Index.append(i) | ||
for i in range(len(Index) - 1,-1,-1): | ||
M = np.delete(M,(Index[i]), axis =0) | ||
return M | ||
|
||
def pivot_index(M,i): | ||
n = len(M) | ||
j = i | ||
for k in range(i + 1,n): | ||
if(M[k,i] > M[i,i]): | ||
j = k | ||
return j | ||
return i | ||
|
||
def pivot_indexH(M,i): | ||
j = i | ||
for k in range(i,0,-1): | ||
if(M[k,i] > M[i,i]): | ||
j = k | ||
return j | ||
return i | ||
|
||
def swapline(M,i,j): | ||
for k in range(0,10): | ||
tmp = M[i,k] | ||
M[i,k] = M[j,k] | ||
M[j,k] = tmp | ||
|
||
def transvection_lines(M,i,k,factor): | ||
for j in range(0,10): | ||
M[k,j] = (M[k,j] + M[i,j]*factor)%2 | ||
|
||
def gauss(M): | ||
for i in range(0,10): | ||
ipiv = pivot_index(M,i) | ||
if(ipiv != i): | ||
swapline(M,i,ipiv) | ||
for k in range(i + 1,len(M)): | ||
factor = M[k,i] | ||
transvection_lines(M,i,k,factor) | ||
return M | ||
|
||
def gaussH(M): | ||
for i in range(9,1,-1): | ||
ipiv = pivot_indexH(M,i) | ||
if(ipiv != i): | ||
swapline(M,i,ipiv) | ||
for k in range(i - 1,0,-1): | ||
factor = M[k,i] | ||
transvection_lines(M,i,k,factor) | ||
return M | ||
|
||
def solver(M): | ||
#print("M:", M) | ||
for i in range(1,1024): | ||
tmp = bin(i)[2:] | ||
l = [int(i) for i in tmp] | ||
while(len(l) != 10): | ||
l = [0] + l | ||
arr = np.array(l) | ||
#print("ARR:", arr) | ||
hyp = M.dot(arr) | ||
#print("hyp:", hyp) | ||
if(all(x%2 == 0 for x in hyp)): | ||
print("Array Found !!") | ||
return arr |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,41 @@ | ||
#!/usr/bin/python3 | ||
import qcircuits as qc | ||
import numpy as np | ||
import library as lib | ||
import sys | ||
import time | ||
|
||
s = [] | ||
|
||
for i in range(0,15): | ||
phi = lib.SimonEM() | ||
print("********** phi ************") #10 qubit tensor | ||
print(phi) | ||
v = phi.to_column_vector() | ||
x = lib.QubitToVector(v) | ||
#print("*******x before ******\n", x) | ||
while(len(x) < 12): | ||
x = x[:2] + '0' + x[2:] | ||
#print("\n*******x after******\n", x) | ||
s.append([int(d) for d in x[2:]]) | ||
#print("\n********s array*******\n") | ||
#print(s) | ||
M = np.array(s,dtype=object) | ||
#print("\n********Reduced Matrix*******\n") | ||
#print(M) | ||
B = lib.gauss(M) | ||
#print("\n********Gaussian Elimination*******\n") | ||
#print(B) | ||
C = lib.gaussH(B) | ||
#print("\n********Hermitian*******\n") | ||
#print(C) | ||
N = lib.ReduceM(C) | ||
#print("\n********Reduced Matrix*******\n") | ||
#print(N) | ||
if(len(N) < 9): | ||
print("No solution") | ||
sys.exit(False) | ||
else: | ||
k = lib.solver(N) | ||
print(k) | ||
sys.exit(True) |