Skip to content

bronzeman2022/Talking-Face_PC-AVS

Repository files navigation

Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation (CVPR 2021)

Hang Zhou, Yasheng Sun, Wayne Wu, Chen Change Loy, Xiaogang Wang, and Ziwei Liu.

We propose Pose-Controllable Audio-Visual System (PC-AVS), which achieves free pose control when driving arbitrary talking faces with audios. Instead of learning pose motions from audios, we leverage another pose source video to compensate only for head motions. The key is to devise an implicit low-dimension pose code that is free of mouth shape or identity information. In this way, audio-visual representations are modularized into spaces of three key factors: speech content, head pose, and identity information.

Requirements

  • Python 3.6 and Pytorch 1.3.0 are used. Basic requirements are listed in the 'requirements.txt'.
pip install -r requirements.txt

Quick Start: Generate Demo Results

  • Download the pre-trained checkpoints.

  • Create the default folder ./checkpoints and unzip the demo.zip at ./checkpoints/demo. There should be 5 pths in it.

  • Unzip all *.zip files within the misc folder.

  • Run the demo scripts:

bash experiments/demo_vox.sh
  • The --gen_video argument is by default on, ffmpeg >= 4.0.0 is required to use this flag in linux systems. All frames along with an avconcat.mp4 video file will be saved in the ./id_517600055_pose_517600078_audio_681600002/results folder.

From left to right are the reference input, the generated results, the pose source video and the synced original video with the driving audio.

Prepare Testing Meta Data

  • Automatic VoxCeleb2 Data Formulation

The inference code experiments/demo.sh refers to ./misc/demo.csv for testing data paths. In linux systems, any applicable csv file can be created automatically by running:

python scripts/prepare_testing_files.py

Then modify the meta_path_vox in experiments/demo_vox.sh to './misc/demo2.csv' and run

bash experiments/demo_vox.sh

An additional result should be seen saved.

  • Metadata Details

Detailedly, in scripts/prepare_testing_files.py there are certain flags which enjoy great flexibility when formulating the metadata:

  1. --src_pose_path denotes the driving pose source path. It can be an mp4 file or a folder containing frames in the form of %06d.jpg starting from 0.

  2. --src_audio_path denotes the audio source's path. It can be an mp3 audio file or an mp4 video file. If a video is given, the frames will be automatically saved in ./misc/Mouth_Source/video_name, and disables the --src_mouth_frame_path flag.

  3. --src_mouth_frame_path. When --src_audio_path is not a video path, this flags could provide the folder containing the video frames synced with the source audio.

  4. --src_input_path is the path to the input reference image. When the path is a video file, we will convert it to frames.

  5. --csv_path the path to the to-be-saved metadata.

You can manually modify the metadata csv file or add lines to it according to the rules defined in the scripts/prepare_testing_files.py file or the dataloader data/voxtest_dataset.py.

We provide a number of demo choices in the misc folder, including several ones used in our video. Feel free to rearrange them even across folders. And you are welcome to record audio files by yourself.

  • Self-Prepared Data Processing

Our model handles only VoxCeleb2-like cropped data, thus pre-processing is needed for self-prepared data.

To process self-prepared data face-alignment is needed. It can be installed by running

pip install face-alignment

Assuming that a video is already processed into a [name] folder by previous steps through prepare_testing_files.py, you can run

python scripts/align_68.py --folder_path [name]

The cropped images will be saved at an additional [name_cropped] folder. Then you can manually change the demo.csv file or alter the directory folder path and run the preprocessing file again.

Have More Fun

  • We also support synthesizing and driving a talking head solely from audio.
  • Download the pre-trained checkpoints.
  • Checkout the speech2talkingface branch.
git checkout speech2talkingface
  • Follow similar steps as quick start and run the demo scripts.
bash experiments/demo_vox.sh

From left to right are the generated results, the pose source video and the synced original video with the driving audio.

Train Your Own Model

  • Not supported yet.

License and Citation

The usage of this software is under CC-BY-4.0.

@InProceedings{zhou2021pose,
author = {Zhou, Hang and Sun, Yasheng and Wu, Wayne and Loy, Chen Change and Wang, Xiaogang and Liu, Ziwei},
title = {Pose-Controllable Talking Face Generation by Implicitly Modularized Audio-Visual Representation},
booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2021}
}

@inproceedings{sun2021speech2talking,
  title={Speech2Talking-Face: Inferring and Driving a Face with Synchronized Audio-Visual Representation.},
  author={Sun, Yasheng and Zhou, Hang and Liu, Ziwei and Koike, Hideki},
  booktitle={IJCAI},
  volume={2},
  pages={4},
  year={2021}
}

Acknowledgement

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •