-
Notifications
You must be signed in to change notification settings - Fork 0
/
Properties.agda
288 lines (233 loc) · 13.9 KB
/
Properties.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
{-# OPTIONS --cubical --no-import-sorts --safe #-}
module Operad.FinSet.Properties where
open import Cubical.Data.Empty renaming (rec to ⊥-rec)
open import Cubical.Data.Nat hiding (snotz; znots)
open import Cubical.Data.Unit renaming (Unit to ⊤)
open import Cubical.Foundations.Equiv
open import Cubical.Foundations.Function
open import Cubical.Foundations.HLevels
open import Cubical.Foundations.Isomorphism
open import Cubical.Foundations.Path
open import Cubical.Foundations.Prelude
open import Cubical.Foundations.Transport
open import Cubical.Foundations.Univalence
open import Cubical.HITs.PropositionalTruncation renaming (rec to p-rec)
open import Cubical.Relation.Nullary
open import Operad.Fin
open import Operad.FinSet.Base
open import Operad.Sigma
private
variable
ℓ₁ ℓ₂ ℓ₃ ℓ₄ : Level
X : Type ℓ₁
Y : Type ℓ₂
Z : Type ℓ₄
W : X → Type ℓ₂
open Iso
p-rec₂ : {P : Type ℓ₃} → isProp P → (X → Y → P) → ∥ X ∥ → ∥ Y ∥ → P
p-rec₂ p f x y = p-rec p (λ x → p-rec p (f x) y) x
compIso⁻ : Iso X Y → Iso X Z → Iso Y Z
compIso⁻ I₁ I₂ = compIso (invIso I₁) I₂
sameSize : ∀ m n → Iso X (Fin m) → Iso X (Fin n) → m ≡ n
sameSize m n I₁ I₂ = Fin-inj (compIso⁻ I₁ I₂)
transportInv : {A₁ A₂ : Type ℓ₁} (I : Iso A₁ A₂) → ∀ a → inv I a ≡ transport⁻ (isoToPath I) a
transportInv I a = cong (inv I) (sym (transportRefl _))
iso→substPath : {A₁ A₂ : Type ℓ₁} {B₁ : A₁ → Type ℓ₃} {B₂ : A₂ → Type ℓ₃} →
(I : Iso A₁ A₂) → ((a : A₂) → Iso (B₁ (inv I a)) (B₂ a)) →
subst (λ A → A → Type ℓ₃) (isoToPath I) B₁ ≡ B₂
iso→substPath {B₁ = B₁} {B₂ = B₂} I Is =
funExt λ a → isoToPath (subst (λ x → Iso (B₁ x) (B₂ a)) (transportInv I a) (Is a))
iso-cong-path : {A₁ A₂ : Type ℓ₁} {B₁ : A₁ → Type ℓ₂} {B₂ : A₂ → Type ℓ₂} →
(I : Iso A₁ A₂) → ((a : A₂) → Iso (B₁ (inv I a)) (B₂ a)) →
PathP (λ i → isoToPath I i → Type ℓ₂) B₁ B₂
iso-cong-path {B₁ = B₁} I Is = transport⁻ (PathP≡Path _ _ _) (iso→substPath {B₁ = B₁} I Is)
congIso₂ : (_∙_ : ∀ {ℓ₁ ℓ₂} (A : Type ℓ₁) → (A → Type ℓ₂) → Type (ℓ-max ℓ₁ ℓ₂))
{A₁ A₂ : Type ℓ₁} {B₁ : A₁ → Type ℓ₃} {B₂ : A₂ → Type ℓ₃} →
(I : Iso A₁ A₂) → ((a : A₂) → Iso (B₁ (inv I a)) (B₂ a)) →
Iso (A₁ ∙ B₁) (A₂ ∙ B₂)
congIso₂ _∙_ I Is =
pathToIso (cong₂ _∙_ (isoToPath I) (iso-cong-path I Is))
isOfHLevelRespectIso : ∀ n → Iso X Y → isOfHLevel n X → isOfHLevel n Y
isOfHLevelRespectIso n I p = isOfHLevelRetract n (inv I) (fun I) (rightInv I) p
inv≡inv→b₁≡b₂ : (I : Iso X Y) → ∀ {x₁ x₂} → inv I x₁ ≡ inv I x₂ → x₁ ≡ x₂
inv≡inv→b₁≡b₂ I {x₁} {x₂} p =
x₁ ≡⟨ sym (rightInv I x₁) ⟩
fun I (inv I x₁) ≡⟨ cong (fun I) p ⟩
fun I (inv I x₂) ≡⟨ rightInv I x₂ ⟩
x₂ ∎
discreteRespectsIso : Iso X Y → Discrete X → Discrete Y
discreteRespectsIso I Dₓ y₁ y₂ with Dₓ (inv I y₁) (inv I y₂)
discreteRespectsIso I Dₓ y₁ y₂ | yes p = yes (inv≡inv→b₁≡b₂ I p)
discreteRespectsIso I Dₓ y₁ y₂ | no ¬p = no (¬p ∘ cong (inv I))
Finite→Discrete : ∀ {n} {x y : X} → Iso X (Fin n) → Dec (x ≡ y)
Finite→Discrete I = discreteRespectsIso (invIso I) discreteFin _ _
ContrIso : isContr X → isContr Y → Iso X Y
fun (ContrIso (x , p) (y , q)) = const y
inv (ContrIso (x , p) (y , q)) = const x
rightInv (ContrIso (x , p) (y , q)) = q
leftInv (ContrIso (x , p) (y , q)) = p
Inj→¬Iso : (f : X → Y) → (∀ x y → f x ≡ f y → x ≡ y) → ∀ x y → Iso (¬ x ≡ y) (¬ f x ≡ f y)
fun (Inj→¬Iso f g x y) ¬p p = ¬p (g x y p)
inv (Inj→¬Iso f g x y) ¬p p = ¬p (cong f p)
rightInv (Inj→¬Iso f g x y) _ = isProp¬ _ _ _
leftInv (Inj→¬Iso f g x y) _ = isProp¬ _ _ _
¬Iso0 : Iso X (Fin 0) → Iso (¬ X) (Fin 1)
fun (¬Iso0 I) _ = zero
inv (¬Iso0 I) _ x = ¬Fin0 (fun I x)
rightInv (¬Iso0 I) zero = refl
leftInv (¬Iso0 I) _ = isPropΠ (λ _ → isProp⊥) _ _
¬Iso-suc : ∀ {n} → Iso X (Fin (suc n)) → Iso (¬ X) (Fin 0)
fun (¬Iso-suc I) f = ⊥-rec (f (inv I zero))
inv (¬Iso-suc I) i = ⊥-rec (¬Fin0 i)
rightInv (¬Iso-suc I) _ = isPropFin0 _ _
leftInv (¬Iso-suc I) _ = isPropΠ (λ _ → isProp⊥) _ _
isContr→≡Fin1 : isContr X → X ≡ Lift (Fin 1)
isContr→≡Fin1 p = isoToPath (ContrIso p (lift _ , λ { (lift zero) → refl }))
uniqueSize : (p q : isFinite X) → p .fst ≡ q .fst
uniqueSize (m , p) (n , q) = p-rec₂ (isSetℕ m n) (sameSize m n) p q
isPropIsFinite : isProp (isFinite X)
isPropIsFinite x y = Σ≡Prop (λ _ → squash) (uniqueSize x y)
isFinite→isSet : isFinite X → isSet X
isFinite→isSet (_ , p) = p-rec isPropIsSet (λ I → isOfHLevelRespectIso 2 (invIso I) isSetFin) p
isSetFinSet : (A : FinSet ℓ₁) → isSet ⟦ A ⟧
isSetFinSet (_ , p) = isFinite→isSet p
isFinite→Discrete : isFinite X → Discrete X
isFinite→Discrete q@(_ , p) x y = p-rec (isPropDec (isFinite→isSet q x y)) Finite→Discrete p
isDiscreteFinSet : (A : FinSet ℓ₁) → Discrete ⟦ A ⟧
isDiscreteFinSet (_ , p) = isFinite→Discrete p
isCardPropInj : (A : FinSet ℓ₁) (B : FinSet ℓ₂) → card A ≡ card B → ∥ Iso ⟦ A ⟧ ⟦ B ⟧ ∥
isCardPropInj A B p = rec A squash λ I₁ →
rec B squash λ I₂ →
∣ compIso (subst (λ n → Iso ⟦ A ⟧ (Fin n)) p I₁) (invIso I₂) ∣
¬isCardPropInj : (A : FinSet ℓ₁) (B : FinSet ℓ₂) → ¬ card A ≡ card B → ¬ ∥ Iso ⟦ A ⟧ ⟦ B ⟧ ∥
¬isCardPropInj A B p = rec A (isPropΠ λ _ ()) λ I₁ →
rec B (isPropΠ λ _ ()) λ I₂ →
p-rec (λ ()) λ I →
p (Fin-inj (compIso (invIso I₁) (compIso I I₂)))
Lift≡ : (A₁ A₂ : FinSet ℓ₁) → ⟦ A₁ ⟧ ≡ ⟦ A₂ ⟧ → A₁ ≡ A₂
Lift≡ A₁ A₂ p = Σ≡Prop (λ _ → isPropIsFinite) p
Lower≡ : (A₁ A₂ : FinSet ℓ₁) → A₁ ≡ A₂ → ⟦ A₁ ⟧ ≡ ⟦ A₂ ⟧
Lower≡ A₁ A₂ p i = fst (p i)
LiftLower≃ : (A₁ A₂ : FinSet ℓ₁) → (⟦ A₁ ⟧ ≡ ⟦ A₂ ⟧) ≃ (A₁ ≡ A₂)
LiftLower≃ A₁ A₂ = Σ≡PropEquiv λ _ → isPropIsFinite
isGroupoidFinSet : isGroupoid (FinSet ℓ₁)
isGroupoidFinSet A B = isOfHLevelRespectEquiv 2 (LiftLower≃ A B)
(isOfHLevel≡ 2 (isSetFinSet A) (isSetFinSet B))
Card1→isContr : (A : FinSet ℓ₁) → 1 ≡ card A → isContr ⟦ A ⟧
Card1→isContr A p = rec A isPropIsContr λ I →
isOfHLevelRespectIso 0 (invIso I)
(subst (isContr ∘ Fin) p isContrFin1)
Card1→≡⊤ : {A : FinSet ℓ₁} → 1 ≡ card A → A ≡ 1-FinSet ℓ₁
Card1→≡⊤ {A = A} p = Lift≡ _ _ (isContr→≡Fin1 (Card1→isContr A p))
ContrFinSet₁ : isContr (Σ[ A ∈ FinSet ℓ₁ ] 1 ≡ card A)
ContrFinSet₁ = (1-FinSet _ , refl) , λ { (_ , p) → Σ≡Prop (λ _ → isSetℕ _ _) (sym (Card1→≡⊤ p)) }
isFiniteContr : isContr X → isFinite X
isFiniteContr (x , p) = 1 , ∣ iso (const zero) (const x) (λ { zero → refl }) (λ _ → p _) ∣
isFiniteEmpty : ¬ X → isFinite X
isFiniteEmpty ¬X = 0 , ∣ iso (⊥-rec ∘ ¬X) (λ ()) (λ ()) (⊥-rec ∘ ¬X) ∣
isFiniteDecProp : isProp X → Dec X → isFinite X
isFiniteDecProp isPropX (yes x) = isFiniteContr (x , isPropX _)
isFiniteDecProp isPropX (no ¬x) = isFiniteEmpty ¬x
isFiniteRemove : isFinite X → (x : X) → isFinite (Σ[ y ∈ X ] ¬ x ≡ y)
isFiniteRemove (zero , p) x = p-rec isPropIsFinite (λ I → ⊥-rec (¬Fin0 (fun I x))) p
isFiniteRemove (suc n , p) x = n , p-rec squash (λ I →
∣ compIso (Σ-cong-iso I λ y → Inj→¬Iso (fun I) (isoFunInjective I) x y) (Fin/ n (fun I x)) ∣
) p
_/_ : (A : FinSet ℓ₁) (a : ⟦ A ⟧) → FinSet ℓ₁
(_ , p) / a = _ , isFiniteRemove p a
isFiniteFin≡ : isFinite X → (a b : X) → isFinite (a ≡ b)
isFiniteFin≡ isFiniteX a b with isFinite→Discrete isFiniteX a b
... | yes p = 1 , ∣ iso
(const zero)
(const p)
(λ { zero → refl })
(isFinite→isSet isFiniteX _ _ p)
∣
... | no ¬p = 0 , ∣ iso (⊥-rec ∘ ¬p) (⊥-rec ∘ ¬Fin0) (⊥-rec ∘ ¬Fin0) (⊥-rec ∘ ¬p) ∣
_⟨_≡_⟩ : (A : FinSet ℓ₁) → ⟦ A ⟧ → ⟦ A ⟧ → FinSet ℓ₁
(_ , isFiniteA) ⟨ a ≡ b ⟩ = _ , isFiniteFin≡ isFiniteA a b
isFinite¬ : isFinite X → isFinite (¬ X)
isFinite¬ (zero , p) = 1 , p-rec squash (∣_∣ ∘ ¬Iso0) p
isFinite¬ (suc n , p) = 0 , p-rec squash (∣_∣ ∘ ¬Iso-suc) p
_⟨_≢_⟩ : (A : FinSet ℓ₁) → ⟦ A ⟧ → ⟦ A ⟧ → FinSet ℓ₁
A ⟨ a ≢ b ⟩ = _ , isFinite¬ (isFiniteFin≡ (snd A) a b) -- (A ⟨ a ≡ b ⟩)
isFiniteClosure : (_∙_ : ∀ {ℓ₁ ℓ₂} (A : Type ℓ₁) → (A → Type ℓ₂) → Type (ℓ-max ℓ₁ ℓ₂)) →
(size : ∀ n (ns : Fin n → ℕ) → ℕ) →
(∀ m (ns : Fin m → ℕ) → Iso (Lift {j = ℓ₁} (Fin m) ∙
(Lift {j = ℓ₂} ∘ Fin ∘ ns ∘ lower))
(Fin (size m ns))) →
{X : Type ℓ₁} {Y : X → Type ℓ₂} →
isFinite X → (∀ x → isFinite (Y x)) → isFinite (X ∙ Y)
isFiniteClosure _∙_ size is (n , X↔Fin) isFiniteY =
p-rec isPropIsFinite (λ I →
size n (fst ∘ isFiniteY ∘ inv I) ,
p-rec squash (λ Is →
∣
compIso (congIso₂ _∙_ (compIso I LiftIso) (flip compIso LiftIso ∘ Is ∘ lower))
(is n (fst ∘ isFiniteY ∘ inv I))
∣
) (finiteChoice n (snd ∘ isFiniteY ∘ inv I))
) X↔Fin
isFiniteClosure′ : (_∙_ : ∀ {ℓ₁ ℓ₂} → Type ℓ₁ → Type ℓ₂ → Type (ℓ-max ℓ₁ ℓ₂)) →
(_+_ : ℕ → ℕ → ℕ) →
(∀ m n → Iso (Lift (Fin m) ∙ Lift (Fin n)) (Fin (m + n))) →
isFinite X → isFinite Y → isFinite (X ∙ Y)
isFiniteClosure′ _∙_ _+_ is (m , X↔Fin) (n , Y↔Fin) =
m + n , p-rec₂ squash (λ Ix Iy →
∣
compIso (congIso₂′ _∙_ (compIso Ix LiftIso)
(compIso Iy LiftIso))
(is m n)
∣
) X↔Fin Y↔Fin
fromClosure : (_∙_ : ∀ {ℓ₁ ℓ₂} (A : Type ℓ₁) → (A → Type ℓ₂) → Type (ℓ-max ℓ₁ ℓ₂)) →
(size : ∀ n (ns : Fin n → ℕ) → ℕ) →
(∀ m (ns : Fin m → ℕ) → Iso (Lift (Fin m) ∙ (Lift ∘ Fin ∘ ns ∘ lower))
(Fin (size m ns))) →
(A : FinSet ℓ₁) → (⟦ A ⟧ → FinSet ℓ₂) → FinSet (ℓ-max ℓ₁ ℓ₂)
fromClosure _∙_ size ps (_ , isFiniteA) B =
_ , isFiniteClosure _∙_ size ps isFiniteA (snd ∘ B)
fromClosure′ : (_∙_ : ∀ {ℓ₁ ℓ₂} → Type ℓ₁ → Type ℓ₂ → Type (ℓ-max ℓ₁ ℓ₂)) →
(_+_ : ℕ → ℕ → ℕ) →
(∀ m n → Iso (Lift (Fin m) ∙ Lift (Fin n)) (Fin (m + n))) →
FinSet ℓ₁ → FinSet ℓ₂ → FinSet (ℓ-max ℓ₁ ℓ₂)
fromClosure′ _∙_ _+_ is (_ , isFiniteA) (_ , isFiniteB) =
_ , isFiniteClosure′ _∙_ _+_ is isFiniteA isFiniteB
finiteProp : (P : FinSet ℓ₁ → Type ℓ₂) → (∀ A → isProp (P A)) →
(∀ n → P (n-FinSet n)) → ∀ A → P A
finiteProp P isPropP f A =
rec A (isPropP A) λ I →
let Fin≡A = sym (Lift≡ A (n-FinSet (card A)) (isoToPath (compIso I LiftIso)))
in subst P Fin≡A (f (card A))
finiteProp₂ : (P : (A : FinSet ℓ₁) (B : ⟦ A ⟧ → FinSet ℓ₁) → Type ℓ₂) →
(∀ A B → isProp (P A B)) →
(∀ n ns → P (n-FinSet n) (n-FinSet ∘ ns ∘ lower)) → ∀ A B → P A B
finiteProp₂ P isPropP f =
finiteProp (λ A → (∀ B → P A B)) (λ _ → isPropΠ λ _ → isPropP _ _) λ n B →
let B↔Fin = finiteChoice n (Fin↔ ∘ B ∘ lift)
in p-rec (isPropP _ _) (λ Is →
let Fin≡B : ∀ i → n-FinSet (card (B i)) ≡ B i
Fin≡B i = sym (Lift≡ _ _ (isoToPath (compIso (Is (lower i)) LiftIso)))
in subst (P (n-FinSet n)) (funExt Fin≡B) (f n (card ∘ B ∘ lift))
) B↔Fin
finiteProp₃ : (P : (A : FinSet ℓ₁) (B : ⟦ A ⟧ → FinSet ℓ₁)
(C : ∀ a → ⟦ B a ⟧ → FinSet ℓ₁) → Type ℓ₂) →
(∀ A B C → isProp (P A B C)) →
(∀ n ns (nss : ∀ i → Fin (ns i) → ℕ) →
P (n-FinSet n) (n-FinSet ∘ ns ∘ lower)
(λ i j → n-FinSet (nss (lower i) (lower j)))) →
∀ A B C → P A B C
finiteProp₃ P isPropP f =
finiteProp₂ (λ A B → ∀ C → P A B C) (λ _ _ → isPropΠ λ _ → isPropP _ _ _)
λ n ns C →
let C↔Fin = finiteChoice₂ n ns λ i j → Fin↔ (C (lift i) (lift j))
in p-rec (isPropP _ _ _) (λ Is →
let Fin≡C : ∀ i j → n-FinSet (card (C i j)) ≡ C i j
Fin≡C i j =
sym (
Lift≡ _ _ (isoToPath (compIso (Is (lower i) (lower j)) LiftIso))
)
in subst (P (n-FinSet n) (n-FinSet ∘ ns ∘ lower))
(λ i j k → Fin≡C j k i)
(f n ns λ i j → card (C (lift i) (lift j)))
) C↔Fin