This app demonstrates workflows in biomedical research and application, assisted by large language models. Find the deployed app at https://light.biochatter.org. This app is a development platform and framework demonstration, not a commercial service. We are commited to open source and very open to comments, criticisms, and contributions! Read the preprint here!
This repository contains only the frontend code of our streamlit app. The code base used for communication with the LLMs, vector databases, and other components of our project is developed at https://github.com/biocypher/biochatter. Check there if you have your own UI and are looking for a way to connect it to the world of LLMs! If you are looking for a full-featured client-server web application, check out BioChatter Next, developed at https://github.com/biocypher/biochatter-server and https://github.com/biocypher/biochatter-next.
To stay up to date with the project, please star the repository and watch the
zulip community chat (free to join) at https://biocypher.zulipchat.com.
Related discussion happens in the #biochatter
stream.
We are very happy about contributions from the community, large and small! If you would like to contribute to the platform's development, please refer to our contribution guidelines. :)
Importantly, you don't need to be an expert on any of the technical aspects of the project! As long as you are interested and would like to help make this platform a great open-source tool, you're good. 🙂
Imposter syndrome disclaimer: We want your help. No, really. There may be a little voice inside your head that is telling you that you're not ready, that you aren't skilled enough to contribute. We assure you that the little voice in your head is wrong. Most importantly, there are many valuable ways to contribute besides writing code.
This disclaimer was adapted from the Pooch project.
You can discuss your favourite prompt setups and share the corresponding JSON files in the discussion here! You can go here to find inspiration for things the model can do, such as creating formatted markdown output to create mindmaps or other visualisations.
You can use the Retrieval-Augmented Generation (RAG) feature to upload documents and use similarity search to inject context into your prompts. The RAG feature is currently only available on local builds of BioChatter Light (see below). It requires a connection to a vector database (currently only Milvus is supported). We follow these instructions to mount a Docker instance on your machine (using the standard ports). We provide a Docker compose setup to mount the Milvus containers and the BioChatter Light container together:
git clone https://github.com/biocypher/biochatter-light.git
cd biochatter-light
docker compose up -d
This command creates three containers for Milvus and one for BioChatter Light. After a short startup time, you can access the BioChatter Light app at http://localhost:8501.
The simplest way to deply BioChatter Light on your machine is using the Docker image we provide on Docker Hub. You can run it using the following command:
docker run -p 8501:8501 biocypher/biochatter-light
You can also build the image yourself from this repository (without the additional containers for the vector database):
git clone https://github.com/biocypher/biochatter-light.git
cd biochatter-light
docker build -t biochatter-light .
docker run -p 8501:8501 biochatter-light
Note that the community key feature is not available locally, so you need to provide your own API key (either in the app or as an environment variable).
Note that connection to locally deployed models via the Xinference API is not supported in the Docker image (because the optional "xinference" dependencies of BioChatter are not installed due to their large size). If you want to use this feature, you can build the image yourself including these dependencies, by setting
biochatter = {version = "0.4.7", extras = ["xinference"]}
in the pyproject.toml
file. You can then build the image as described above,
or install and run the app locally using Poetry (see below).
Instead of manually entering the key, you can provide it to the Docker run
command as an environment variable. You can designate the variable in your
environment directly (export OPENAI_API_KEY=sk-...
), or start the container
with a text file (e.g. local.env
) that contains the keys:
OPENAI_API_KEY=sk-...
...
you can run the following command:
docker run --env-file local.env -p 8501:8501 biochatter-light
Local installation can be performed using Poetry (or other package managers
that can work with a pyproject.toml
file):
git clone https://github.com/biocypher/biochatter-light.git
cd biochatter-light
poetry install
For Apple Silicon machines, this must be followed by the following commands
(inside the activated environment using poetry shell
):
pip uninstall grpcio
mamba install grpcio # alternatively, conda
This step is necessary due to incompatibilities in the standard ARM grpcio package. Currently, only conda-forge provides a compatible version. To avoid this issue, you can work in a devcontainer (see above).